COMPUTER SCIENCES CORPORATION

National Aeronautics and Space Administration	
Goddard Sp	light Center
Greenbelt, Maryland 20771	
Attention:	G. Muckel
	Code 664
	Bldg. 2, Rm. S-207
Subject:	Contract NAS 5-24350
	Task Assignment 593
	Working Paper

Gentlemen:

Enclosed are five copies of the informal working paper entitled "International Sun-Earth Explorer-C (ISEE-C) Cosmic Ray Experiment Encyclopedia Generator - Design Overview". This document deals with the design of the Encyclopedia Data Base Generator (ENCGEN) for the GSFC cosmic ray experiment on ISEE-C.

Please let me know if you have any questions regarding the document.
Very truly yours,
COMPUTER SCIENCES CORPORATION
2.c. Suxatol
L. P. Gunshol

Section Manager
Science and Applications Program

LPG:kg
Enclosures

INTERNATIONAL SUN-EARTH EXPLORER-C (ISEE-C) COSMIC RAY EXPERIMENT ENCYCLOPEDIA GENERATOR DESIGN OVERVIEW

Prepared by
Dr. J. Childs
COMPUTER SCIENCES CORPORATION

August 1978

This document deals with the design for the Encyclopedia Data Base Generator (ENCGEN) for the GSFC cosmic ray experiment on ISEE-C. The overall design of this system is based entirely on the Encyclopedia Generator written for the Voyager -1 and -2 cosmic ray experiments and designed by Dr. Nand Lal of CSC (1977).

The purpose of the ISEE-C ENCGEN is to take raw experiment data from the Experimenter Data Record (EDR) tapes, pack it, monitor it, summarize it, and put it into an encyclopedia tape format (see Appendix), in a form easily accessible by analysis programs. The major subsystems of ENCGEN consist of:

- READER - reads science data from EDR records; packs rates; dispatches data into subcom blocks
- MONITOR - monitors data quality and continuity, status changes, calibration data (marks up data within the subcom blocks)
- ANALYZER - establishes volume and chapter boundaries; fills out volume and chapter headers
- OUTPUTTER - outputs all data into verse structure. Summarizes rates; calculates spin periods; builds coincidence condition maps.

The four subsystems of ENCGEN share data and run parameters in a single common data area, the Master Control Block. The science and housekeeping data itself is processed in a region called the subcom block area. It is with this region that all major functions of the subsystems are performed.

The following tables outline the ENCGEN design. Table 1 is a Voyager ENCGEN routine chart, with an indication next to each module name as to whether the routine was left unchanged, modified, or deleted with the ISEE-C application. Table 2 is an ISEE-C ENCGEN routine chart indicating those routines that were
carried over from Voyager, and those routines that were written new. Table 3 is a summary of changes made to the Voyager ENCGEN in developing the ISEE-C version. Tables 4 through 7 are Input/Output charts for the four major ENCGEN subsystems--READER, MONITOR, ANALYZER, and OUTPUTTER, respectively. Finally, the ISEE-C Encyclopedia tape format is defined in the Appendix.

Table1-Voyager ENCGEN Routine Chart (2 of 3)

ENEXT

Table 2 - ISEE-C ENCGEN Routine Chart (1 of 3)

```
ISEE-CGENCYCLOPEDIAGGENERATOR
```


Table 2 - ISEE-C ENCGEN Routine Chart (2 of 3)

TabTe 3 - Routine Conversion Summary (1 of 4)
ISEEVCVOYAGERYONVERSION

THE FOLLOWING IS A SUMMARY OF THE CHANGES MADE TO VOYAGER ENCYCEN TE-MAKE-IT-COMPATIBLE-WITH-ISEE-C-FCRAATS.

HABFIALIZER:
THE-FCLLCWING ROUTINES WERE MOOIFIEO
PMGEA FCR NEW TAPE ANC INDEP SETS FOR HET AND VLET
ENCGEA-NO LONGEF-NEEDED-SCMECCPY STEPS
en InIt no Longer neeced tine queve

THE FOLLOWING RCUTINES WERE DELETED
RATFAB NQ-LOAGER-ANY-RATE CECCMPRESSION
DECLCG m
tocoEx

FEADER:

THE FGLLOMING ROUTINES-WERE-COMPLETELY REWRITIEN RUT-THE-
EASIC FUNCTICN IS THE SAME:
MAFKUP-CATA-DEPENDENT
RDIDSEG *
ROESTREL_-_H
DISPATCH TIME QUEUE DISCARDED
DISOFEN -DATA-CEPENDENT-
DISPFR $\quad *$
DISPFI——_
DISPP $\quad *$
DISFILLP
DISUPCSE
OISUFESG URENAMED OISUPOSR)
THE-FOLLOING ROUTINES_WEREDELETED RRIMARILY DUE IO
LACK OF MODE ATTRIBUTES AND DIFFERENCES IN DATA.
ROSEGSCI
RDICMCDE
ROSAVTIM
DISETABL
OISSETT
CISSETS
OHSSETG
OI SFILL
DISCLCSE
DP I
DOsw
EASIC
OPCODES
ENGPFC
YALUES_ALL_OF ENGPRO_ROULINES_NQI NEEDED RECAUSE OF
SETUP LACK DF SEPARATE ENGIN RECORD
IOMXOP
PLGENG
-DECCM

Table 3 - Routine Conversion Summary (2 of 4)

Table 3 - Routine Conversion Summary (3 of 4)

OUTPUT:

Table 3 - Routine Conversion Summary (4 of 4)

THE FCLLOWING ROUTINES WERE MODIFIED TO REELECT DIFFEGENT OATA CHINT
ENCMCB sueccm TIMEOT VOLINT VERSE SE GHCR

```
INPUT TO ISEE-C READER
```

TIA ENCMCE:

Table 5 - MCNIT OR Input/Output Chart

```
    MONITOR DESIGN DOCUYENT
INPUT: VTA ENCMCB
    EQYEXTSA
    via subcom
    SUGAPIND
    SOFLAG
    SOYLETSI
    SUVITCAL
    SUYCALAL
    SUPETVAU
    SONEXTSU
ouTPUT: VYFA SUBCOM
    SUOFLAG
SUCALAGG
SUBFLAG
Sucasmc
suhetcal
SUAGFO1 
```

ISEP-CENCYCLOPEDIA-ANALYZER INPUT/OTTPPUT TADLE.

1. INPOT TO ANALYZER . . .

SUSTATUS	F	HET STATUS HNRD
SUVIETST	F	VLET STATUS NOZD T1:T2 ENABLE
SUHETCAL	X	HET CAL BIT FROM DIGITAL SUBCOM
SUHCALA	X	hef cal alloa sit frgm status
SUVLTCAL	X	VLET CAL START BIT
suycala	X	VLem Cal alcon 3it
SUGAPIND	X	data gan innicatos
sudoat.	X	DATA QUALITY ACCEP*ANCE IEYEL
scatito 1	X	HET-I AUTO GAIN INDICATOR
suauto 2	X	HET-II AUTO GAIN INDICATOR
SUCHSMC	X	CHAPTER SUBJFCT MATmPR CODE
ScTRFLAG	x	tiam cualtiy flag
SURITFLG	X	BITRRATE FI, AGG OP OMA-MITISEC STVCE STA RT OF
SUDTSTRT	${ }_{F}^{\text {D }}$	START S/C TIME OF DATA-MILISEC SINCE START OF YR
SCDOFTAG	4 F	data oulatit plags
Soptag	H	OVFR ALL EVALmATION ELAG
SUORPIT	GF	ORBITAL POSITION I: meters
SCPREVST	AL 4	
Sovretsu	AL 4	
SUVLEAAN	H	vLET ANALOG Hotisexzeping
SOHETPM	i	HET POHER MONITOR
SEVITE	H	VLET POERE MONITOR
SUEFITH	H	HET THERAISTOR
SCVLTTH	H	VLET THEFMISTOR
StSPIN	F	SPIV IN MILLISECONDS

2. OCTPUT FKOM ANALYZER . . .

- . Into haster contaol elock:

Tacle 6 - ANALYZER Input/Output Chart (2 of 2)

major typur

1. ENCHCB - Master control Block. The following is broken
A. Data Quality flags and Record qeeping Data

B. FHA Erocessing

last voline * processed
 (HETPHA aar table ENFPTYE \quad F PHA y Pisses table ENMAXPB F Fiocks alloc. for pha Sort ENPBSIZE P - PAA OVEntS OMr PHA verse ENLPHA F Length Dita Soittarea ENOPA F F phat sort area

Data type of first pHA Verse ENNPHSII F D data fyyes in HETPHA History Verse
C. Addresses data types is Ver pha History verse

ENCHINT F \quad volume introduction
ENCHELOC 16 F © Chapter introduction
D. 1/0
ENPRUNIT \quad Prog message log unit

ENSCUNIT F \quad logical anit for science
ENENEXI'F JFCB for output encyclopedia tape
E. out encur bir
E. Output iape Trackerits per feet
 $\begin{array}{ll}\text { ENFTMAX } \\ \text { ENFTGUT } \\ D & \text { maximum amt. of feet of use on output tape } \\ \text { cute }\end{array}$
F.

- ENLOGCAI F a CCMMON block logcat
G. Utility

ENDCC:BT 2 D floating point conversion area
ENL1
ENI
ENT2
ENI4
ENR4
ENI4
ENR4
EMR8
F
$\stackrel{F}{F}$
F
F
F
F
F
print code for L*1 yata

EnR8 F print code for R*4 data
2. Chapter Introduction
cichsmi x chapter subject matter code
3. Volume Introduction
4. SUBCOM - blccks of 64 minor frames assoc. ${ }^{\text {with }}$ each chapter.

APPENDLX A - ISEE-C LIBRARY ORGANIZATION

The ISEE-C library consists of encyclopedias. The encyclopedia is organized into volumes. Each volume is defined by a fifteen-minute interval that starts at an integral fifteen-minute boundary, i.e., on the hour, fifteen minutes after the hour, thirty minutes after the hour, and forty-five minutes after the hour. The clock used for the purpose of determining time is the Universal time at the spacecraft. Each volume is assigned a unique number which is the number of fifteen-minute intervals elapsed before the volume since the start of calendar year 1977. A volume comprises of an integral number of instrument subcom sequences, and therefore may contain experiment data for a time interval which differs from the time interval of the volume by as much as one subcom sequence. A volume begins with an introduction which identifies the volume and provides information regarding volume contents. Following the introduction, there may be one or more chapters.

A chapter contains data obtained under the same instrument conditions (status, analog), and begins with an introduction. The introduction identifies the chapter and provides a general description of chapter contents, and conditions that may have led to the creation of this chapter. A chapter is terminated when either a change in experiment status occurs, or there is a gap in the data. The chapter introduction identifies the actual start-time and end-time of data included in the chapter. A number of verses follow the chapter introduction.

A verse contains all data of a specified type that was acquired within the time span covered by the chapter. Each verse begins with a preface that identifies the verse as belonging to a particular chapter of a volume and describes the type of data contained in the verse. The data follows the preface in a format appropriate to the type of data.

The formats of an ISEE-C encyclopedia volume introduction, a chapter introduction, and a verse are presented below. Tables A-1 through A-6 provide additional details on these formats.

Byte	Length	Name	Description
0	1	VOCHPN	Chapter number ($=0$)
1	1	VOVERN	Verse number ($\equiv 0$)
2	1	EPV	Encyclopedia Program Version
3	1	SCID	Satellite Identification
4	4	VOVOLN	Volume number
8	6	EPDT	Encyclopedia Program Date
8	2	EPYR	(Year - 1900)
10	2	EPMIN	Month of year
12	2	EPDY	Day of month
14	6	VCDT	Volume Creation Date
14	2	VCYR	(Year - 1900)
16	2	VCMN	Month of year
18	2	VCDY	Day of month
20	10	VSTRT	Time of Volume (Start Time)
20	2	VSYR	(Year - 1900)
22	2	VSMN	Month of year
24	2	VSDY	Day of month
26	2	VSHR	Hour of day
28	2	VSMN	Minute of hour
30	2		Spare
32	2	NMCHP	Number of chapters in the volume (may be zero)
34	48	APRMV	Twelve 2-HW fields, one for each of the analog parameters, that define acceptably range of variation of the parameters, in units of the parameter. HW 0-minimum acceptable value 1-maximum acceptable value For parameters for which is a percentage change is acceptable, HW 0 is set $=255$, and HW 1 contains acceptable variation, in parts per 256.

Byte	Length	Name	Description
4	4	CHVOLN	Volume Number
8	8	DTSTRT	Starting S/C time of data included
8	2	DTYR	Year - 1900
10	2	DTHR	Hour of year
12	2	DTSC	Second of hour
14	2	DTMSC	Millisecond of second
16	8	DTEND	Ending S/C time of data
16	2	ENDYR	Year - 1900
18	2	ENDHR	Hour of year
20	2	ENDSC	Second of hour
22	2	ENDMSC	Millisecond of second
24	4	STSCC	Starting time, S/C clock
28	6		Spare
34	2	NMYER	Number of verses in chapter
36	100	CHCN	Chapter Contents Table nth byte of this field points to the verse containing nth type of data
136	4		Spare
140	4	HETST1	HET Command Status, first 3 bytes right justified (bits CD-1 - CD24)
144	4	HETST2	HET Command Status, second 3 bytes right justified (bits CD25-CD48)
148	2	VLETC	```VLET Calibration High order byte - CAL Allow Low order byte - CAL Start```
150	2	HETC	HET Calibration
152	2	NMMF	Total number of minor frames in chapter

Byte	Length	Name	Description
220	4	OPGSEX	Orbital Position (GSEX) average for chapter
224	4	OPGSEY	Orbital Position (GSEY), average for chapter
228	4	OPGSEZ	Orbital Position (GSEZ), average for chapter
232	4	SPINPD	Spin Period (msec), average for chapter
236	4	DELSPN	Maximum Spin Deviation (msec)
238	2	VOWILD	$\Sigma \mathrm{mf}$ with normal spin readouts
240	2	WILD	$\Sigma \mathrm{mf}$ with "wild" spin readouts
242	2		$\begin{aligned} & \text { Bit Rate } \\ & 00-64 \mathrm{BPS} \\ & 01-1024 \mathrm{BPS} \\ & 10-2048 \mathrm{BPS} \\ & 11-512 \mathrm{BPS} \end{aligned}$
n.m VERSE ($\mathrm{n}, \mathrm{m} 1$)			
Verse Preface (Length $=8$ bytes)			
Byte		Name	Description
0		VECHPN	Chapter number
1		VEVERN	Verse number
2			Spare
3		VESMC	Subject master code - Data Type (See Table A-1.)
4-7		VEVOLN	Volume number
8-11			Spare
12			Verse body - Data

Orbital Position (GSEX) average for chapter

Orbital Position (GSEY), average for chapter

Orbital Position (GSEZ), average for chapter

Spin Period (msec), average for chapter

Maximum Spin Deviation (msec)
$\Sigma \mathrm{mf}$ with normal spin readouts
$\Sigma \mathrm{mf}$ with "wild" spin readouts
Bit Rate
00 - 64 BPS 01-1024 BPS 10-2048 BPS 11-512 BPS
n. m VERSE ($\mathrm{n}, \mathrm{m} 1$)

Verse Preface (Length $=8$ bytes)

PREVERSE $=$ offset of data $=12$

	Name	Description Len	Length (bytes)
PREVERSE +0	HCMPS	HET Commutator position for the first set of rate readouts	1
+1	VCMPS	VLET Commutator position for the first set of rate readouts	e
+2	GAIN1	HET1 gain mode for the first set of readouts ($0=10 \mathrm{w}$ gain; $1=$ high gain)	ain) 1
+3	GAIN2	HET2 gain mode	1
+4	AUTO1	HET1 automatic gain switching ($0=\mathrm{yes}$; $1=$ no)	1
+5	AUTO2	HET2 automatic gain switching	1
+6	NSEQ	Number of rate sequences in the verse (i.e., groups of 64 minor frames)	2
+8	RATE	40 *NSEQ rate words in the format in Table A-2.	
Data Type 1-Coincidence Condition Map (Length $=300$ bytes)			
PREVERSE +0	CCM	One 16 -bit word for each of the first 150 rates in Table A-3. Each work indicates the presence of terms in coincidence condition applicable to the corresponding rate. The format of the entries is shown in Table A-4.	
Data Type 2-Rate Summary			
PREVERSE +0	RSM	Two hundred fifty-four rate summary blocks (16 bytes each) corresponding to the rates in Table A-3. The form is in Table A-5.	$\begin{aligned} & \text { nary } 254 \times 16 \\ & \text { ling } \\ & \text { ormat } \end{aligned}$

PREVERSE +0 NUMPHA Number of VLET PHA events in 4this chapter
+4 Spare
+8 EVPREV One byte field for each of the 16 16PHA events that preceded the firstPHA event in this chapter. Eachbyte contains the data type of thecorresponding event. In the eventof data discontinuity between previ-ous volume and the current volume,these fields are padded.+24 EVID One byte field for each event in thischapter. Byte contains data type ofthe event. (Padded=all bits on; Nullevent=all bits off)Record filled to double-word boundary.
Data Type 4 - HET PHA History
(Same as data type 3, except HET)
Data Types 5-22
PREVERSE +0 PHARAT Rate summary block for the corre- 16 sponding rate
+16 PHAEV Number of events corresponding 4 to data type
+20 Spare 4
+24 PHA PHA events; 8-byte entry for each event in the format in Table A-6.
Data Type 23 - Spacecraft Words
PREVERSE +0 SCBL Number of blocks of spacecraft words +4 Space
$+8 \quad(6 * 64$ bytes $) *$ SCBL spacecraft data words.

TABLE A-1. DATA TYPES

Code	Description
0	Raw rates
1	Coincidence condition map
2	Rate Summary
3	VLET PHA Summary
4	HET PHA Summary
5	HET-I AST, High Gain
6	HET-I AST, Low Gain
7	HET-I BSTP, High Gain
8	HET-I BSTE, High Gain
9	HET-I BST, Low Gain
10	HET-I PEN, High Gain
11	HET-I PEN, Low Gain
$12-18$	HET-II (same as 5-11)
19	VLET-I, event type 0
20	VLET-I, event type 1
21	VLET-I, event type 0
22	VLET-II, event type 1
23	Spacecraft words

0

$$
1-2
$$

0

Description

Fill data flag ($0=$ no fill; 1=fill)

Worst Data Quality Flagfor minor frames required for this rate
Bad spin value flag (sectored rates only) ($0=$ spin nominal $1=$ "wild" spin)
Trend check indicators
failed forward trend check ($1=$ fail)
failed backward trend check ($1=$ fail)
applied forward trend check ($1=$ applied)
applied backward trend check ($1=$ applied)

Rate Counts

TABLE A-3. LOCATION OF RATE SUMMARY BLOCKS IN
TABLE A-3. LOCATION OF RATE SUMMARY BLOCKS IN
RATE SUMMARY TEXT

Description

Symbol

HET-I	High Gain,	$\mathrm{A}_{1} \mathrm{~A}_{2} \overline{\mathrm{C}}_{4} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$	AS
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$	BSp
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \overline{\mathrm{SB}} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{1}$	BSe
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{1}$	PENH
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{1} \overline{\mathrm{G}}_{1}$	PGH
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \overline{\mathrm{C}}_{3} \mathrm{SB} \overline{\mathrm{G}}_{1}$	BS4p
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \overline{\mathrm{C}}_{3} \overline{\mathrm{SB}} \overline{\mathrm{G}}_{1}$	BS4e
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \overline{\mathrm{C}}_{2} \mathrm{SB} \overline{\mathrm{G}}_{1}$	BS3p
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \overline{\mathrm{C}}_{2} \overline{\mathrm{SB}} \overline{\mathrm{G}}_{1}$	BS3e
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \overline{\mathrm{C}}_{1} \mathrm{SB} \overline{\mathrm{G}}_{1}$	BS2p
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \overline{\mathrm{C}}_{1} \overline{\mathrm{SB}} \overline{\mathrm{G}}_{1}$	BS2e
HET-1	Low Gain,	$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{SA} \mathrm{C}_{4} \mathrm{G}_{3}$	ASZ3
"	"	$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{3}$	BSZ2
"	"	(same as 4-11, except Low Gain)	

HET-II (same as 1-21, except HET-II)
Sectored, HET-I, High Gain $A_{1} A_{2} \overline{\mathrm{C}}_{4} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2} \quad$ AS
$\mathrm{A}_{1} \mathrm{~A}_{2} \overline{\mathrm{C}}_{4} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$, summed AS
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2} \quad \mathrm{BSp}$
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$, summed BSp
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2} \quad \mathrm{BSp}$
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$, summed BSp
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \overline{\mathrm{C}}_{1} \overline{\mathrm{SB}} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2} \quad \mathrm{BSe}$
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{C}_{4} \overline{\mathrm{C}}_{1} \overline{\mathrm{SB}} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2}$, summed BSe
79-86

Sectored, HET-I, Low Gain
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{SA}_{\mathrm{C}}^{4} \overline{\mathrm{G}}_{3}$
ASZ3
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{SA} \overline{\mathrm{C}}_{4} \overline{\mathrm{G}}_{3}$, summed ASZ3
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{2}$
BSZ2

96
97-150 Sectored, HET-II, (same as 43-96, except HET II)
151 VLET-I $\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}} \Sigma_{1}$
D $\Sigma 1-\mathrm{D} \Sigma 2$
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}} \Sigma_{2}$
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}} \Sigma_{1} \mathrm{E}_{1}$
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}} \Sigma_{1} \cdot \mathrm{E}_{2}$
$\mathrm{D}_{1} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}}$
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{2}$, summed
BSZ2

152
153
154
155
162 156
157-162
163-170 171
172-179
180
181-188 189
190-197
$1+\pi+2$
198
235223199
36224 224 2 200
177228 201
$21+202$
234.229 2! 203
240120 204
205
12580 206
207
2 1
32 208
33 209

$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{SB} \overline{\mathrm{C}}_{1} \overline{\mathrm{G}}_{2}$, summed	BSZ2
Sectored, HET-II, (same as 43-9,6, except HET II)	
VLET-I $\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}} \Sigma_{1}$	D $\Sigma 1$
D $51-\mathrm{D} 22$	D $51-\mathrm{D}$ 22
$\mathrm{D}_{\mathrm{I}} \mathrm{DII}^{\overline{\mathrm{F}}} \Sigma_{2}$	D22
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \mathrm{F} \Sigma_{1} \mathrm{E}_{1}$	D YLE1
$\mathrm{DII}^{\text {DII }} \overline{\mathrm{F}} \Sigma_{1} \cdot \mathrm{E}_{2}$	DE1E2
$\mathrm{D}_{1} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}}$	D
VLET-II (same as 151-155, except VLET-II)	
Sectored, VLET-I $\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\text {II }} \overline{\mathrm{F}} \Sigma_{1}$	D $\Sigma 1$
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\mathrm{II}} \overline{\mathrm{F}} \Sigma_{1}$, summed	
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\text {II }} \overline{\mathrm{F}}$	D
$\mathrm{D}_{\mathrm{I}} \mathrm{D}_{\text {II }} \overline{\mathrm{F}}$, summed	
$\begin{array}{ll} \text { Sectored, VLET-II } & D_{1} D_{11} \bar{F} \Sigma_{1} \\ & D_{1} D_{11} \bar{F} \Sigma_{1}, \text { summed } \end{array}$	
$\mathrm{D}_{1} \mathrm{D}_{11} \mathrm{~F}$	D
$\mathrm{D}_{1} \mathrm{D}_{11} \overline{\mathrm{~F}}$, summed	
HET-I, High Gain, A_{1}	A1
" 1	A2
C_{1}	C1
C_{2}	C2
C_{3}	C3
C_{4}	C4
B_{2}	B2
B_{1}	B1
SA_{1}	SA1
SA_{2}	SA2
SB	SB

Description Symbol
3402482210211-222 HET-I, Low Gain (same as 199-210 except Low Gain)
223-246 HET-II (same as 199-222 except HET-II)
247
VLET-I D_{I} DI
24248 DII249250 " ' F258
251-254 VLET-II (same as 247-250 except VLET-II)

TABLE A-4. BIT ASSIGNMENTS FOR COINCIDENCE CONDITION MAP

Bit	HET
0	$\mathrm{~A}_{1}$
1	$\mathrm{~A}_{2}$
2	C_{1}
3	C_{2}
4	C_{3}
5	C_{4}
6	$\mathrm{~B}_{2}$
7	$\mathrm{~B}_{1}$
8	SA_{1}
9	SB_{1}
10	G_{2}
11	G_{3}
12	G_{1}^{\prime}
13	0
15	0
14	

One in a bit position implies that corresponding term is presented. Whether coincidence/anti-coincidence is determined by the rate definitions.

Bit 15 is set if the data type is disabled.

TABLE A-5. RATE SUMMARY BLOCK FORMAT

Description

0-3

4-7

8-11

12-15

Accumulated counts for this rate, excluding readouts which (a) appeared in a minor frame for which bit errors exceeded tolerance, or (b) failed trend check.

Time in seconds over which the counts above were accumulated.

Accumulated counts for this rate, excluding readouts for which data quality was unacceptable or gain mode was unavailable.

Time in seconds over which the counts in the preceding word were accumulated.

Byte	$\underline{\text { Bit }}$	Description
$0-1$	$0-1$	Worst Data Quality Flag for minor frames required for this PHA event
	$2-3$	Spare
	$4-15$	PHA Tag bits
$2-3$	$0-3$	0
$4-5$	$4-15$	PHA 1 Readout
	$0-3$	0
$6-7$	$4-15$	PHA 2 Readout
	$0-3$	0
	$4-15$	PHA 3 Readout

TAG BITS:
VLET -

HET -

 64 MINOR FRAME BLOCK CORRESPOND TO THE RATES IN THE
FOLLOWING 64 MINOR FRAME BLOCK．

 1 80 $0 \leftrightarrows$
INVAヨา3 10 N

$$
\text { TRUE: } A_{1}, B_{1},\left(B_{2}\right),\left(C_{1}\right),\left(C_{4}\right)
$$ 5.5μ SEC AFTER THE FIRST OF THE FOLLOWING BECOMES

－SW Jxifnn re onnorv（）ON：BLON FOR，SAY，B2 fuil suocom cycle the bi sample time is twice that NOTE REPEAT BLOCK FOR SINGLES RATES；E．G．IN ONE
 in automatic gain changing mode but each HET I AND HET II GAINS ARE THE SAME WHEN © LOGICAL EXPRESSIONS BY COMMAND． $(\sim)=$ DENOTES $S A=S A_{1} \cdot S A_{2}$
PEH／PGBETWEEN TWO DEFINING CONOITIOHS； $1 / 4 \equiv S_{1}=s_{2}=1$ ． －se the b－stopping event type definition is the

 コdoos 731 198ヨNコ H91H HA1

ISEg-C TYH PHA EVEVT TAGS:

$1 \begin{aligned} & \text { BST IF } C_{1}=0 \\ & \text { PEN IF } C_{1}=1\end{aligned}$

TYH HIGH ENERGY TELESCOPE 1OEE-C TELEMETRY FORMAT

T0: Dr. Tycho von Rosenving\&661
FROM: ISEE Data Processing Engineer/565.2
SUBJECT: ISEE Data Tape Formats

You will find attached a booklet providing general information relative to ISEE data processing at GSFC and a pulse code modulation. (PCM) data tape format conforming as much as possible to your specific format request. You may find that I have included some telemetry words not requested by you but which I think you will need.

If any additional telemetry words are desired, you should let me know soon because these formats, unless amended, will be used to generate test tapes for our system testing. Please send me the address where your data tapes are to be delivered. Usually we find after launch that your address for correspondence is different than the address of your tape librarian.

If any questions arise, please feel free to contact me. My telephone number is 301-982-6408. If no answer, please call 301-982-5928, and leave your name, telephone number, and subject for discussion.

John H. Schmidt
Attachment

Experiment No. 33

ISEE

GENERAL INFORMATION

John Schmidt
ISEE DPE
Information Processing Division

June 1976
 Recrised fancery 1977

GODDARD SPACE FLIGHT CENTEF
Greenbelt, Marylanc

The ISEE experimenters will receive several types of data tapes from GSFC on a weekly basis. These types are:

- PCM telemetry
- integer binary labels, integer binary data
- Common data (ISEE-A)
- integer binary label, mixed data
- Common data (ISEE-C) - integer binary label, mixed data
- Definitive attitude/MCE ${ }^{-}$-
-floating point label, floating point data
All ISEE digital data tapes will be written in 9-track odd parity mode with 1600 cpi density unless the user can not accommodate this medium. In that case, the alternative will be 7 -track, 556 cpi , odd parity 。 We do not recommend 800 cpi on either 7 or 9 -track digital tapes.

The PCM telemetry data tapes will be made up from many files. Each telemetry message to GSFC from a ground station will reach the experimenter as a separate file. The elements of all files on all ISEE data tapes supplied by IPD will be as follows:

- File header record
- Data records
- End-of-file mark (EOF)

All tapes will end with three consecutive EOF marks. All tape shipments will be accompanied by a shipping letter itemizing the tape contents.

The common data tapes will have a single file per week. The file headier record will be written in binary, and the data records will have mixed integer binary and the floating point requested by the recipient. Both the file header record and the data records will be compatible with the user's computer. The common data tape header record and the data record formats will be supplied at a later date.

* Mueti-wordinate ephomeria (TEE-A Anil/ only)
:
The attitude/MCE tapes will also have a single file per weel. The file header record and data records will be written in the floating point requested by the recipient. Each physical data record will have ten one-minute logical records. There will be occasions when the experimenters' computer will not be able to read some portion of a data tape due to excessive parity errors or damaged tapes. These tapes have always been replaced. However, a new system has been designed, and the experimenters are requested to be prepared to receive not the whole tape (PCM telemetry data) reprocessed, but only the bad file. The IPD will perform all PCM data reprocessing on a file basis not by decom tapes as in the past. Each user must be prepared to merge the good part of the original decom tape with the replacement files. At the cost of data processing today, neither GSFC nor the experimenters can afford to reprocess a week of PCM data because one file is bad. All experimenters' analysis programs should be prepared to skip over a certain number of records with unrecoverable parity errors on each tape. Replacement of common data tapes and attitude/ MCE tapes will be performed according to the same policy; except the tapes are only one file long.

All correspondence with GSFC concerning any of the types of data covered in this memorandum must include the experimenter's IPD assigned experimenter number. We have numbered experiments consecutively through ISEE-A, B , and C° as found on pages 110.1 and 110 of the ISEE-SIRD. These experimenter ID numbers are listed in Table 1.

All file header records will contain a 1440 -bit field (4036 -bit words) precedins the described portion of the record. This field will be desirnated as the GSFC TAG and will not be described to the users. The length of the tas was chosen such that it occupies an integrai number of words in all users' computers.

The spacecraft clock given in the file header record and in each locical record header will be a composite of the spacecraft clock from the status field and the

Table 1
ISEE Experimenter \mathbb{D}

ISEE-A	Project Code	Investigator
1	ANM	Dr. Anderson
2	BAM	Dr. Bame
3	FRM	Dr. Frank:
4	GUM	Dr. Gurnett
5	HAM	Dr. Harvey
6	HEM	Dr. Helliwell
7	HOM	Dr. Hovestadt
δ	HPM	Dr. Heppner
$9 \cdot$	MOM	Dr. Mozer
10	OGM	Dr. Ogilvie
11	RUM	Dr. Russell
12.	SHM	Dr. Sharp
13	WIM	Dr. Williams
ISEE-B		
14	AND	Dr. Anderson
15	EGD	Dr. Moreno
16	FRD	Dr. Frank
17	GUD	Dr. Gurnett
18	HAD	Dr. Harvey
19	KED	Dr. Keppler
20	PAD	Dr. Paschmann
21	RUD	Dr. Russell
ISEE-C		
	ANH	Dr. Anderson
23	BAH	Dr. Bame
24	DFH	Dr. Hynds
25	HKH	Dr. Hechman
20	HOH	Dr. Hovestadt
27	MEH	Dr. Miever
$2:$	OGH	Dr. Osilvie
29	SBH	Dr. Steinverg
30.	SCH	Dr. Scarf
31	SMiH	Dr. Smith
32	STH	Dr. Stone
- 34	TYH	Dr. Von Rosenvinge
3:	UIH	Dr. Wilcos (CDT)

These numbers will appear on your internat mexternal tupe haves and on the shapone itwers accompanying the tabes. .
frame counter field in the minor frame λ thither a minor frame counter. which ippoximaty anew - 97 tiers.

The PCM telemetry tapes will have data records composed of N logical records, each containing one subcom sequence 164 minor frames on ISEE-A and 32 minor frames on ISEE-B). A typical physical record would contain four logical records. Each logical record will have several parts:

- A logical record header.
- The experimenter's PCAI data.
- Necessary analog suibcom data.
- Necessary digital subcom data.
- In some cases, the PC.I data from some other experimenter.

The logical record header must be the first item in each logical record, but the other four items can come in any order.

All data tapes written by IPD computers will be compatible with the user's computer in regard to word length. There are several users who will be doing a portion of the data reduction and the co-investigator will also do a portion. In these cases, IPD will write the tapes to be compatible with one of the two computers. The IPD cannot send data from one experiment to more than one investigator.

PC.I Telemetry Tape Format:

All items written on the PCAI telemetry tapes are written in integer binary. The elements of the file header record on the PCM telemetry data tape are as follows:

- GSFC TAG
- Satellite ID number
- Recording station ID number
- Experiment ID number
- Start time of data (3 words)
- year
- day of year
- milliseconds of day
- Stop time of data (3 words)
- year
- day of year
- milliseconds of day
- Last clock in this file
- Next file start time of data (3 words)
- year
- dat.
- milliseconds
- Next file clock start
- Percentage of data recovered (actual $)$ (anticipated) $)$
- Number of minor frames in file

4096

- Bit rate (i.e., 1066,16384, etc.)
- Shipping group number
- Reel sequence number:

File number on this tape

- Orbital position data flag (1 word)

$$
\begin{aligned}
& 0=\text { definitive orbit } \\
& 1=\text { predicted orbit } \\
& 2=\text { no orbit; propogation delay not computed }
\end{aligned}
$$

For all users who have computers with 32 -bit words or larger, each of the above elements will be one word in the user's computer word length, except those elements identified as being three words and the GSFC TAG which is 1440-bits. Those users who have 16 -bit computers will find several fields from the file header record and also later in the logical record header which are too large for their computers. Those fields will be presented as two adjacent 16 -bit fields. The fields referred to are:

- Milliseconds of day
- Spacecraft clock.
- Orbital position in meters

Because the orbital position can have negative components, IPD will provide li on B^{\prime} s these values in a single 32 -bit data stream (eta complement). The file label records will be the same length as the data records which follow.

The logical record header which comes once per 64 minor frames Λ isubcom sequence) has the following elements:

- Experiment ID number
- Day of year of first bit of minor frame 0 (or $64,125,192$).
- Milliseconds of day of first bit of minor frame 0 (or 64, 128, 192).
- Spacecraft clock for minor frame 0 (or 64, 126, 192).
- Peverá
- Average frame rate in microseconds
- Frame counter
* Will $11 a s * 00=1 \operatorname{di}$ data at some pom in logical record

$$
11=\text { no fill data in logical record }
$$

- Bit rate indicator - $00=$ other

$$
01=\text { low bit rate }, \quad 1024
$$

$$
10=\text { high bit rate } \quad 2048
$$

$$
11=\text { other } .512
$$

- Time quality $-00=$ quick look. - wo time suilitt check \& wo $01=$ fraction smoothed and delay corrected (n) (ny?)
but unverified by other stations
$10=$ smoothed, delay corrected and verified
after adjusting the ground station time
11 = same as 10 but no adjustment required to
ground station time
- Data quality flags •(2 bits per minor frame)

$$
\begin{aligned}
& 00=\text { fill data } \\
& 01=\text { unused } \\
& 10=\text { good (undecoded } \\
& 11=\text { excellent (decoded) }
\end{aligned}
$$

scare Eclupte
: Orbital position in geocentric equatorial inertial coordinates (meters)

$-\operatorname{SEI}_{y}^{2} G S E y$

- GET $_{2} G S E_{z}$

The experimenters PCMI data records will not contain any whole subcom cycle of fill data unless the experimenter has requested that his physical record be made up from one major frame. If he does, the four logical records will shari
placed. Those experimenters whose data set is not driven by the major frame spike will not receive whole subcom sequences of fill.,

Fill data will be all zeros in the data fields. If any of the 64 minor frames in a logical record has valid data, then the logical record header will also have valid information in all fields. If all 64 minor frames are missing then the header and the data portion of the record will inot included on output except as mentioned above \mathscr{H}_{1} whare all ficlde will be jaw.

The data portion of the PCM telemetry data tapes will be described specifically in the attachments. The minor frame words MFW), analog subcom \#1 (ASC \#1), analog subcom $\# 2$ (ASC $\# 2$) and, digital subcom (DSC) numbers used in the specific format descriptions correspond to the numbers in the ISEE telemetry list. ISEE-A list shown in Tables 4, 5, 6 and 7 . The ISEE-B subcom words have not heen so spreified.
Common Data Iape Format.
The common data tape format will be provided at a later date.
Attitude/MCE Data Tape Format
The attitude/MCE data tape formats are shown in Tables 2 and 3.

EROM : T. vol Rosenvinge
P.I. for ISEE-C-TYH
sUBJECT: Tape Formats for ISEE-C-TYH
We have reviewed the tape format which you sent us and we find that i\$ is acceptable. Signed integer constants (such as position) will be required in two's complement. We currently understand that the file start times of all multi-file tapes will be in time sequential order, that the "start time of the next file" will be zero for the last file on the tape, and that such tapes will begin and end only on approximate one week boundaries. We accept your deletion of minor frame word 60 from our format. We further understand that each physical record will always correspond to a major frame and that a physical record could be all pad except for a single minor frame. File label records will be the same length as the data records which follow. The bit-rate indicator needs to be defined for ISEE-C. We do not now how to extract a number of needed quantities from the data but understand that the required information is contained in the data words you are sending us. These quantities include the sun time, magnetic field crossing time, spin-axis angle with respect to the spacecraft-sun line, instrument on-off status for-all-portions-of the spacecraft, etc. We also understand that you do not check to see if engineering format is being used since operationally this is not supposed to happen.

T. vol Rosenvinge

Cosmic Radiations Branch
$1 . b 16 \cdot 1$
Data Pool File Labe!
works, where a deperus on the word 3 ito wed ;
n
$\mathrm{n}+1 \quad$ Satellite: D number.
$n+2$ Intended recipient of this tape. (See rabi 2.,
$n+3 \quad Y Y$, start of file, 2 digits of year.
n+4 DDD, start of Me, Julian day 1-366.
$n+5 \quad$ SSSSS, start of file, seconds of day.
$n+6 \quad Y Y$ end of file. 2 digits of year.
$n+7 \quad$ DDD, end of file. Julian day $1-366$.
$n+8 \quad$ SSSSS, end of he, seconds of day.
n+9 High oder bits
$n+10$
Low order 21 bits
Clock at start of the data pol file.
n+1) Group number (corresponds to telemetry data tape group number:
:4t12 Minimum value of sm pernod found withe this file. seconds,

Five id size is dependent on the intended recoupment

$n+81$	Number of time lincs (maxmum 80 !
$\mathrm{n}+82$	Start day of gear (i)
$0+83$	Stant seonds of dux 11)
$17+64$	High order bits of siart spacenaft cioxx (1)
- $n+85$	Low order 21 bits of start spacecraft clock (1)
$n+86$	Bit rate (1-low bit rate: 4-high bit rate) (1)
$n+87$	Start record number (1)
.	.
,	.
$n+656$	Start day of year (80)
$\mathrm{n}+657$	Start seconds of day (80)
$n+658$	High order bits of start spacecraft clock (80)
$n+659$	Low order 21 bits of start spacecraft dock (80)
$n+660$	Bit rate (1-low bit rate: 4-high bit rate) (80)
n+6,61	Start record number (80)
$\left.n+n n_{2}\right)$	Fill to equal data record length
810^{\cdots}	

Coata Rerox
and
$\frac{n=2 e r}{\frac{1}{2}}-\frac{8}{2}$

4
4
5
? R
 Bevand of day, $x=0-x$

Coch, recond acit: Aometes 2: itt
Procoren fact:
$($ ($) /(25 \times 356),$.

6 Butnate:

$$
\begin{array}{ll}
1 . \phi=512 \text { tpo } & (\text { lockip }) \\
2 \phi=1 \phi .24 \text { hpo } \quad(\text { low } \\
4 . \phi^{\prime}=2 \phi 48 \ln \quad(\text { high })
\end{array}
$$

$\because 7$
Dumany record indicatore:
$\phi . \quad$ at haot one minor-fame of deat
withen this recost span
$7 . \phi=$ no doto within the Apean of thin recosd. The recend io a dermany
8 Timeline indicatos

$7 . \phi=$ this resod ingina acosextindine
9 Data record number

Spanes
(Data Record Continued)

$\left.\begin{array}{c}24 \\ \vdots \\ 168 \\ 169 \\ \vdots \\ \vdots \\ 188\end{array}\right\} \begin{aligned} & \text { spares } \\ & \text { Reserved for possible HOH } \\ & \text { algorithiw. }\end{aligned}$
(Data Record Continued)
Word \# Description (All values are floating point).

Maneuver indicators for couch of the 12 approx. S-minute intervials of this record: $0.0=$ no maneúver this. $\begin{aligned} & 7.0= \text { maneuver indicated } \\ & \text { during this interval. }\end{aligned}$
SMITH Algorithm (Magnetometer) a (SMH):

STETABERE Algorithm (SBH)

(Data Record Continued)

Word \#
Description (All values are floating point)
621
62.2

RAMAP2 (1) Averse voltage, 200
fRizz. Interact so. 1 of 34

\vdots
$;$
$\left.\begin{array}{l}\text { RAMAPR (30) } \\ \text { RARMSZ }(30)\end{array}\right\} \begin{gathered}\text { Average voltage and RMS, } \\ 200 \mathrm{kHz} \text {, interval nO. } 30\end{gathered}$ RARMS2 (30) $\quad 200 \mathrm{kltz}$, interval no. 30° of 3 :

AB6ESSON Algorithm (GNH)

BAME Algorithm (BAH)
$\begin{array}{cccc}705 & \text { IONPD (1) Io r pseudo density Interval } \\ \vdots & \vdots & \text { no } 1 \text { of } 12\end{array}$
716 IONPD(12) Ion pseudo density o Interval $\begin{array}{ccc}717 & \text { WINDPS (1) Solar wind pseudo speed. } \\ \vdots & \text { Interval no. } 1 \text { of } 12 .\end{array}$ 728 WINBPS(12) Solar wind pseudo speed, 729 WINDPA(1) Solar wind pseudo flow angle. $\vdots \quad \vdots \quad$ Interval no. 1 of 12. 740

WINDPA (12) Solar wind pseudo flow angle. Interval no. 12 of 12 .
(Data Record Continued)
Word \# Description (all valuer are fleatiga, print)
SCARF Algorithm (SCH):
741, PLA3I(1) Plasma wave 31 Hz, maximum voltage.
Interval no. 1 of 12
7402 PLAnK (1) Plasma wive 1kitz, maximum voltage.
$743 \quad \operatorname{PLA} 3 I K(1)$ Plasma wive $3 / \mathrm{KHE}$, minimum voltage.
$744 \quad \operatorname{PLANT}(1)$ Interval no. 2 of 12.

$786 \operatorname{PLA1K}(12)$ Plasma wave 1 LK I I , maximum voltage. Interval no. 12 of 12
789 PLABIK (12) Plasma wave 31 KHiz , maxissumvoltage
788 PLANT (I2) Plasma wave antenna status. Interval no. 12 of 12 .

LIMA POSENWINGE Algorithms (TH):
789 PARTLO (1) Particles, low range $4-57$ MeV/nwleo. ! \quad Interval no. I of 4.
792 PARTLO (4) Particles, Low range 4-57 MeV/nucleon
793 PARTHI(1) Particles, high range $18-70$ MeV/nuck $\begin{array}{ccc}19 & \vdots & \text { Interval no. } 1 \text { of } 4 \\ \vdots\end{array}$
796 PARTHI(4) Particles, high range 18-70 MeV/mosecter, Interval no. 4 of 4 .
(Pita Record Continued)
Word \# Description (All moues are flouting point)
IE FEITER A(awithon (DEH):

797 PpOKO1 (1) Protons 78-205KeV. Interval no. 1 of 3
798 PppoL02 (1) Protons 536-1900 NeV. Interval no. I of 5 799 Isotron) Isotropy index. Interval no. 1 of 800 quit (I) Quadrant. Interval no. I of 3.

805 Phonol (3) Protons $T-205 \mathrm{keV}$. Interval no. 3 of 3.
806 ProLo2 (3) Protons $536-1400 \mathrm{KeV}$. Interval no. 3 of 3 .
807 IsoTio(3) Isotropy index. Interval no. 3 of 3 ,
808 quad (3) Quadrant. Interval no. 3 of 3 .
MEYER Algorithm (MEH):
809 LOWEE (1) Low energy electrons Mated (5-150 ind:
810 LOWEE (2) Interval no. 1 of 2
Interval, 10.2 of 2

ISEE-C DATA POOL TapO

FILF $\angle A B E L$
$\frac{D A+A R E C}{D A A A R C}$
\vdots
$\frac{D A A A R C}{D A A A R C}$
\vdots
\vdots
$D A A A R R C$

timeline 1
up to 80 time lins
each time line has a stant time, clech, fit rate and a stant reeod number.

DAYA RECENS HAS:
RRCEOS START DuE, CLCCL
rigcuary ractor
Bit ratr
"NEW TrKKUNG" \sim OLCATR
Rflevs ~umbra

MANAUR - I~DCATAZS FI IACH OF DAF $12 \sim 5-M 1 \sim$
\Rightarrow intclutas ar rece

STEABGG - 30 RROOGTS ((M10)
Anghinetan FRGX - 12 READCa (5 Miv)
BPMS P\&QMA - 5 MiN/RO,
SCARF $" \quad$ - "
TfCWto cesmu RAF - 15 MTN/RO.

$$
\begin{aligned}
& \text { Mんtar - } 30 \text { aाN/ Ro, }
\end{aligned}
$$

SO "OVKLAP" WANOLNG ON WHELT +ARA ONCD RRASNABLT AG Recon LEUA (60 niv).

Presunably evif 1 BLt RAtr/RCCErs. WHAT DO TAK INTRLALS MKAN O~ EWANGR OF BIT RATA, AT DATA GAPS

Wh WAUR "RRGURNY FACtI?"

ISEE-C MEDIUM ENERGY

COSMIC RAY EXPERIMENT TELEMETRY DESCRIPTION
Tycho von Rosenvinge October 1, 1976
(REVISED JUNE 15, 1978)
ISEE-C TYH FORMAT

-	1	2	3	4								12	13	14	15
16	17	18	19	20	21	22	23	24	28	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	$\begin{array}{\|c\|} \hline \text { ANAA } \\ \text { S/C } 1 \\ 58 \end{array}$	$\begin{aligned} & \hline D I G \\ & S / C \\ & 59 \end{aligned}$	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	78	78	77	78	79
sо	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	15	116	117	118	119	120	121	$\begin{aligned} & \text { ANA } \\ & \text { S/C 2 } \\ & 122 \end{aligned}$	123	124	125	126	127

DMU Telemetry Format Convolutional Mode
1 MINOR FRAME
MINOR FRAME PARAMETER
WORD
5 VLET PHA DATA
VLFT RATES，FLAGS \＆PHA STATUS BITS
HET RATES910
HET PHA DATA11
58 AHALOG SUBCOM 非159
DIGITAL SUBCOM
122
ANALOG SUBCOM 非2
ANALOG SUBCOM 1 （BY POSTTIONS；$=$ STEPS）
STEP 非
51 VLETS ANALOG HOUSEKEEPING
52
HETS POWER MONITOR
53 VLETS POWER MONITOR
ANALOG SUBCOM 2
STEP 非
17 HETS THERMISTOR
19 VLETS THERMISTOR
DIGITAL SUBCOM（BY POSITIONS，＝STEPS）
STEP 护43
44
45
AND COMMAND STATUS
46
AS FOLLOWS：

(By convention, Bit 7 is read out first in time and Bit 0 last)
HET SUBCOM POSITION $=(S 4)(S 3)(S 2)(51)$
COMMAND BIT ASSIGNMENT FOLLOWS:

$$
\begin{aligned}
& \text { CD1 - Dummy Bit (Always } 0 \text { in Readout). } \\
& \text { CD2 - Suppress } A_{2} \text { Term (HET-I). } \\
& \text { CD3 - " } B_{2} \text { " } \\
& \text { CD4 - " } \frac{2}{G_{1}} " \quad \text { " B Stopping Only. } \\
& -\operatorname{CD5}-\quad C_{1} \text { " } \quad \text {. } \\
& \text { CD6 - " } C_{4} \text { " " } \\
& \text { CD7 - " } \quad \frac{4}{G_{1}} " \quad \text { Other Than B Stopping. } \\
& \text { CD8 - Delete AS Analysis (HET-I). } \\
& \text { CD9 - " BSE " " } \\
& \begin{array}{llllll}
\text { CD10 - } & \text { " } & \text { BSp } & " & " \\
\text { CD11 - } & " & \text { PEN } & " & "
\end{array} \\
& \text { CD12 - Suppress } A_{2} \text { Term (HET-II). } \\
& \begin{array}{llllll}
\text { CD13- } & " & B_{2} & " & " & \\
\text { CD14- } & " & \frac{G_{1}}{} & " & " & \text {, B Stopping Only. }
\end{array} \\
& \text { CD15- " } \quad C_{1} \quad " \quad \text { " } \\
& \text { CD16- " } C_{4} \quad \text { " } \quad \text { " } \\
& \text { CD17 - " } \bar{G} " \quad \text { " Other Than B Stopping. } \\
& \text { CD18 - Delete AS Analysis " . } \\
& \text { CD19 - " BSe " " } \\
& \text { CD20- " BSp " " . }
\end{aligned}
$$

COMMAND BIT ASSIGNMENT (CONT ${ }^{1}$ D):

```
CD21 - Delete PEN Analysis (HET-II).
CD22 - Power Off G4 (HET-I).
CD23 - " " G}\mp@subsup{\textrm{G}}{3}{
CD24 - " "
CD25 - " " G G " 
CD26 - " " B B2 " .
CD27 - " " B B1 " .
CD28 - " " A A
CD29 - " " A A "
CD30 - " " }\mp@subsup{C}{4}{
CD31 - " " C C " .
CD32 - " " }\mp@subsup{\textrm{C}}{2}{
CD33 - " " C C "
CD34 - " " G G (HET-II).
CD35 "- " " G G3 " 
CD36 - " " G G " .
CD37 - " " G ' "
CD38 - " " B B2 " 
CD39 - " " B B
CD40 - " " }\mp@subsup{A}{2}{
CD41- "
CD43 - " " 
CD44 - " "
CD45 - " " C C " .
CD46 - CAL ENABLE (1 -> CAL ENABLED).
CD47-HG
CD48-HG}2=\mp@subsup{S}{5}{}\cdot\textrm{CD}48+\textrm{CD}50\cdot\overline{\textrm{CD}48
```

The HETS and VLETS power monitors nominally sit at +4.0 volts when the experiment is $O N$ and at ground when the experiment is OFF. For definition purposes, any value >2.5 volts $=0 N ; \leq 2.5$ volts $=0 F F$. The analog subcom 8 -bit readout value must be multiplied by .02 volts to obtain the voltage level at the input to the analog subcom converter. Hence 5.10 volts is the converter full scale.

The thermistor conversion table for all thermistors is as
follows:

DIGITAL	TEMPERATURE
READOUT	C
17	+70
20	+65
24	+60
28	+55
33	+50
39	+45
46	+40
53	+35
62	+30
72	+25
84	+20
97	+15
111	+10
126	+5
142	0
158	-5
174	-10
190	-15
200	-20
230	-30
249	-40
255	-50

VLET DATA

Data for the VLET system includes:

1. Pulse height analysis data (PHA data)
2. Rates data
3. Analog housekeeping
4. Power monitor and temperature data

The positions in a minor frame where these are read out have been indicated on the preceeding pages. We will now discuss each in turn in more detail.

The pattern of PHA and rates data readouts is indicated on the next page. A single PHA event corresponds to a single particle entering one of the two VLET telescopes. The data for a single PHA event consists of a DI pulse-height (11 bits), a DII pulse-height (11 bits), an E pulseheight (10 bits) and event tag bits Po and P1. The three pulse-heights for a single event can be read out in 2 minor frames (words 5 and 6) as shown on the next page. However the Po and $P 1$ tags are read out for two events at a time in word 7, frames 3, 7, 11, . . . as indicated. Thus the pulse height data and tag data for two PHA events is read out in four minor frames. The null event (no particle detected) is characterized by DI= DII $=E=0$. Pl tells whether the event was detected in Telescope 1 or in telescope 2; the state of the Po bit classifies the event as one of two different event types. Po and Pl indicate the set of storage registers from which readout occurs and need not be zero for null-events.

The VLET system contains 8 non-sectored rate counters and 8 sectored rate counters.

At the end of each block of 64 minor frames (minor frames 0-63) the contents of all 16 of these rate registers are transferred for read-out during the next block of 64 minor frames. The registers are then immediately cleared and any subcommutators are advanced in position. Non-sectored rate counters then immediately resume counting until the end of the new block of 64 minor frames. Each sectored rate counter counts a particular event rate only when the corresponding telescope is looking in a particular direction, i.e. the spin plane is divided into 8 different azimuthal sectors and to each sector corresponds one of the eight sector rate counters. After the end of one block of 64 minor frames, counting into the sector rate registers doesn't resume until the sun spike occurs. Events are then counted successively into the 8 different sector rate counters for 8,16 or 32 complete spins depending upon whether the spacecraft bit-rate is 2048 IBPS, 1024 IBPS or 512 IBPS respectively. The nominal spin period is 3 seconds. Complete accumulation will therefnre be finished by the end of the 64 minor frame block.

Each VLET rate register read-out (sectored and non-sectored) consists of 24 bits read out in word 7. Every fourth readout of word 7 contains tag/status information, however, so the contents of one rate register is read out every four minor frames and all 16 rate registers are read out in

64 minor frames（see Page 9．，Register R1 is read out first，R2 next and so on through R8，then sector rate register SRl is read out followed by SR2，．．．SR8．

The rate counter subcommutation and rate coincidence conditions are indicated in the table on Pagel0．For 8－level subcommtation， the subcommutator position $\equiv[(S 2)(S 1)(S 0)]$ octal．The $S 2, S 1$ and $S 0$ bits are obtained from word 7 ，frames 3,7 and 11 （modulo 16）respectively as shown on Page 9 ．

NOTE：ALL RATES REGISTERS（HET \＆VLET）ACCUMULATE DATA FOR 64 MINOR FRAMES AND READ OUT THE RESULTS DURING THE NEXT 64 MINOR FRAMES； THUS RATE READOUTS IN ONE 64 MINOR FRAME BLOCK SHOULD BE ASSOCTATED WITH THE SUBCOM POSITIONS READ OUT IN THE PRECEDING 64 MINOR FRAME BLOCK．THE HET AND VLET SUBCOMS ARE INDEPENDENT OF EACH OTHER．

The VLET analog housekeeping（step 51 on the spacecraft analog subcom 非1）is further subcommed by 8 inside the experiment using the same subcommutator clock（S2）S1）（S0）as used for the VLET rate registers：

ANALOG SUBCOM
PARAMETER（S2）（S1）（S0）READOUT DESIGNATION

$\mathrm{V}_{0}=$	$+12^{\circ} \mathrm{V}$	0	0	0	X
$\mathrm{V}_{1}=$	$+6 \mathrm{~V}$	0	0	1	X_{1}^{0}
$\mathrm{V}_{2}=$	Thermistor 3	0	1	0	x_{2}^{1}
$\mathrm{V}_{3}=$	Thermistor 4	0	1	1	X_{3}^{2}
$\mathrm{V}_{4}=$	Spare	1	0	0	X_{4}^{3}
$V_{5}^{4}=$	Spare	1	0	1	X_{5}^{4}
$\mathrm{V}_{6}=$	－6 V	1	1	0	x_{6}
$\mathrm{V}_{7}^{6}=$	－12 V	1	1	1	X_{7}^{6}

The VLETS Power Monitor（analog subcom 非，step 53）nominally sits at 4.0 volts when the experiment is $O N$ and at ground when the experiment is OFF．

The spacecraft analog subcom has a linear range from 0 to 5.10 V ． Hence，the following conversions are necessary to relate the subcom readout $X^{\prime} s$ with the appropriate voltage：

$$
\begin{aligned}
V_{0} & =0.06 \times X_{0} \text { volts. } \\
V_{1} & =0.04 \times X_{1} \text { volts. } \\
V_{6} & =0.4 \times X_{6}-0.44 \times X_{1} \text { volts. } \\
V_{7} & =0.0444 \times X_{7}-0.0733 \times x_{0} \text { volts. }
\end{aligned}
$$

The thermistor temperature conversions are the same as given on Page 5．X is read in the same 64 minor frame block as the one in which S_{2} ， S_{I} and S_{o} are zero，etc．（i．e．，this is unlike the rates）．

The VLETS Power Monitor（Analog Subcom 非，Step 53）nominally sits at 4.0 volts when the experiment is $O N$ and at ground when the experiment is OFF．See Page 5 for further details．

VLET status readout is as indicated on Page 9. Systems 1 and 2 are both enabled when their status bits are zero. The PHA enable/disable commands are executed when they are received. The internal stimulus is not turned on, however, until the beginning of the first 64 minor frame block after the command is received. It remains on for 8×64 minor frame blocks and then automatically shuts itself off. It may also be commanded off. The internal stimulus system is ON during the 8×64 minor frame blocks which have the CAL ON bit set to 1 . PHA events from the internal stimulus may continue to be read out for as many as eight pulse-height events after the system shuts off. The 64 minor frame block following the turnoff of the internal stimulus will contain rates accumulated when it was on, even though the CAL ON bit is reset to zero.

The VLET PHA counters are quite different from those for the HET. The counters for DI and DII start counting from zero and have no overflow protection. The E counter starts counting from zero and freezes at all ones if overflow is detected. (The HET PHA counters start counting from 1 and freeze at zero if overflow is detected.)

bit structure, vLet pha/rate readouts

The TYH High－Energy Telescope（HET）produces three types of digital data（rate data，PHA data and command status data），and 3 analog parameters． One complete data cycle requires 16 blocks of 64 minor frames，or 1024 minor frames．A single 64 minor frame block format is shown in Figure 1．＊ Word 8 contains all the HET rate data，consisting of 16 consecutive 22－bit． rate counter readouts，followed by 8 additional 20 －bit sectored rate counter readouts，for a total of 512 bits in the 648 －bit words．The first bit in the sequence（i．e．，the first bit readout in time）appears in minor frame $\# 0$ and is the MSB（ 2^{21} ）of rate counter $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$ ；this is designated RI_{22} ．The succeeding bits $\left(\mathrm{Rl}_{21}, \mathrm{Rl}_{20}, \mathrm{Rl}_{19}\right.$ ．．． R_{1} ）complete the readout of $R 1$ ，followed by $R 2\left(R 2_{22}, R 221 \cdots R_{1}\right)$ and so on until all 16 rate counters and the 8 sectored rate counters（SR1 through SR8） have been readout．This represents $1 / 16$ of a complete rate data cycle and corresponds to a single position of the rate counter commatator．The commutator position is read out as the S4，S3，S2 and S1 bits in the digital subcom（ 54 is MSB）of the preceding 64 minor frame block．The logical rates，i．e．，the required coincidence anticoincidence conditions among various elements of each telescope，are shown in Fig． 2 ！Some rates are not commutated at all（R3，R4，R11 and R12，for example），and represent the same coincidence condition regardless of the state of the Sl－S4 bits and the HG_{i} bits（high gain／low gain）for each telescope． Other rates may be commutated between two quantities using only the Sl bit （e．g．，R5）or only the HG_{i} bit（R1）．R2 and R10，however，are cormutated using both $H G_{i}$ and the S1，S2 bits as well．The singles rates from each telescope element are comatated modulo 16 in R8 and R16 using all the bits S1，S2，S3，S4．

PHA（pulse－height analysis）data for selected events appears as a 48 －bit sequence starting in the MSB of Word 9 of even－numbered frames and ending with the LSB of Word 11 of odd－numbered frames．The first 12 bits read out（T12－T1 in Fig．1）are tag bits which identify the event type （A STopping，B STopping，or PENetrating），the telescope，the sector orientation of the spacecraft at the time of the particle detection，the penetration range of the particle through the C stack，and other house－ keeping parameters of that event．The remaining 36 bits contain three 12－bit numbers representing the amplitude of three selected detector signals． Fig． 1 illustrates the various PHA addresses and identifies which detector quantity is represented for each of the PHA event types．

Command status data is read out in the ligital subcom．Eight sub－ com words，i．e．， 128 minor frames，are required for a complete readout of all 48 status bits．Each block of 64 minor frames，however，contains one readout of the rate commutation position and the two gain bits，one for each telescope．See page 3．Command status changes whenever a command is recei ed；i．e．，it is not aligned with 128 minor frame boundaries．

[^0]
NOTES: R RATES CORRESPOND TO THE A-STOPPING
RVENT TYPE FOR HETS I AND II

* r2, rio rates correspono to the b-stopping EVENT TYPE FOR HETS I AND II I IN HIGH GAIN THE B-STOPPING EVENT TYPE DEFNITHE TIME
 R3, RII = PEN
SA $=S_{1} \cdot$ SA $_{2}$.
LOGICAL EXPRESSIONS BY COMMAND.
$H G=0 \Rightarrow$ LOW GAIN; HGI \Rightarrow HET I ; HGII \Rightarrow HET II
HET I AND HET II GAINS ARE MODE BUT EACH
MAY be COMMANDED TO A FIXED GAIN INDEPENDENTLY.
NOTE REPEAT BLOCK FOR SINGLES RATES ; E.G. IN ONE
FULL SUBCOM CYCLE THE BI SAMPLE TIME IS TWICE THAT FOR, SAY, B2.
NOTE: NO () AROUND $\overline{G_{3}}$, UNLIKE MJS.
all rate equations contain a strobe term to establish A COINCIDENCE APERTURE OF $\sim 3 \mu \mathrm{SEC}$. THE STROBE OCCURS 5.5μ SEC AFTER THE FIRST OF THE FOLLOWING BECOMES TRUE: $A_{1}, B_{1},\left(B_{2}\right),\left(C_{1}\right),\left(C_{4}\right)$

BIT STATES : BLANK \Rightarrow NOT RELEVANT - $\Rightarrow 0$ OR

 BITS HGI, HGII, SI, S2, S3, S4 ARE QUOTED HERE FOR ACCUMULATETIME: RATES ARE ACCUMULATED DURING ONE 64 MINOR FRAME tIme; Rates are accumulated during one 64 MINOR frame
block and read out in the next 64 minor frame block; THE STATES OF BITS HGI,HGII,SI,S2,S3, S4 READ OUT, IN A 64 MINOR FRAME BLOCK CORRESPOND TO THE RATES IN THE FOLLOWING 64 MINOR FRAME BLOCK. DELETION OF $\left(C_{1}\right)$ IS CONTROLLED BY THE SAME COMMAND BIT A SINGLE COMMAND BIT CONTROLS DELETION OF (\bar{G}_{1}) TERMS IN A SINGLE COMMAND BIT CONTROLS AELETI HET-II SECTOR RATES; A SEPERATE COMMAND BIT RI AND HET-II SECTOR RATES; ALIOL OF $\left(\overline{G_{1}}\right)$ TERM IN R2; SIMILARLY FOR HET-I.

The HET internal stimulus, however, is turned on at the beginning of the first 64 minor frame block after the internal stimulus command ($P 88$, provided CD46=CAL ENABLE bit $=1$) is received. The internal stimulus system then stays on for $16 x 64$ minor frames (1 complete sybcom cycle) and then automatically shuts itself off. The internal stimulus may be shut off earlier by resetting the CAL ENABLE bit (CD46) to zero. Note that the CAL bit in the HET status data is set during the 16×64 minor frame blocks during which the internal stimulus is ON. Corresponding rate data extends into the following 64 minor frame block. PHA data accumulated while the internal stimulus is on can extend as much as 3 event readouts after the time it is shut off (i.e., a CAL bit $=0$ in a 64 minor frame block is not a guarantee that this block contains no data from the internal stimulus).

HET null PHA events consist of a string of 48 zeros. The lowest PHA channel value for a non-null HET event is 1 ; a pulse-height readout of zero for a non-null event implies overflow of the corresponding counter; i.e., top of range. The tag bit field could be tested alone as a test for null events since it should be all zeros only for null events.

ISEE-C Sector Rates (HET + VLET).
Nominal spin rate $=20 \mathrm{RPM} \rightarrow$ Spin Period $T=3$ seconds. One complete readout of 8 sector rate counter contents takes 64 minor frames or 32 seconds at 2048 IBPS. At the end of a 64 minor frame block the contents of the 8 sector rate counters are transferred for readout during the next such block; the next rate to be sectored is selected by advancing the appropriate sub-com by one step and clearing the 8 counters. When the next sun-pulse is detected, rate accumulation begins in the first sector rate counter. One-eighth of a revolution later the rate pulses are switched from the first sector rate counter to the second for the next one-eighth of a spin and so on. At the end of one complete spin counting is resumed in counter one. The process stops after a complete spins, where n is bit-rate dependent:

IBPS	n
2048	8
1024	16
512	32

To obtain counts per second, divide the number of events counted by nxT/8 seconds.

The sun-pulse may be derived from either the Panoramic Attitude Sensor System (PAS) or from the Fine Sun Sensor System (FSS). The PAS and FSS systems are located in facets 6 and 14 respectively, 180° apart. However, each is canted by $22-1 / 2^{\circ}$ and the sun-pulse from the FSS is delayed by 180° so that the sun-pulse is generated when sunlight is normally incident on facet 5 (actually the PAS pulse comes 0.35° later than this). The facets are numbered 1 to 16 according to a right-hand rule, the rotation of the spacecraft follows a right-hand rule and the spin axis will point to the North Ecliptic pole \pm°. The VLETS are located in facet 8 with their symmetry axes in the spin plane and rotated from a normal to facet 8 by 15° towards facet 7. The HETS are located such that their symmetry axes lie in the spin plane, the A-ends looking in a direction parallel to a vector from the center of the spacecraft to the junction of facets 2 and 3 . This leads to the patterns on page 16.

The VLET sector rates are accumulated in 24 bit counters; the HET sectored rates are accumulated in 20 bit counters.

VLET SECTORS

HET
b-stopping SECTORS

ON-PAYSICAL

Project Norslatter

Bendix has won the competition for the contract for the operation of the Control Center at GSFC. This contract is now with RCA. The effective date for the Bendix takeover is June 1. We stand a chance of losing some or all of our experienced spacecraft analysts and controllers. We hope our losses are nil or minimal, but training time will be required if we get some new people. A status report will be available at the June SWT meeting.

The following is from the DPE, John Schmidt:
This is to clarify the time tagging of the ISEE data tapes.

All previous documentation to experimenters specifically stated that the time on your experiment data tape is the time of the first bit of the first word of the subcom cycle.

We want to inform you that the time given with each subcom cycle is not the time of the first bit of the first minor frame of the subcom cycle. The time given is, and will continue to be, the time of the trailing edge of the last bit of the first minor frame of the subcom cycle. To change your computer programs to conform to this change, you must sub取民 one frame period from all times given on the experimenter tapes. You will find that this value is given in each logical record (Item 5).

The ISEE-C time specification is changed to be the same as this new specification for ISEE-A and ISEE-B.

If you have any questions or want to discuss the matter, feel free to call John Scmidt on 301-982-6408 or TELEXGSTS Schmidt/565.2

IV. EXPERIMENTS

Final Reports
All U.S. experimenters have a contractual requirement to submit a final report. We are not interested in an engneering type report to be submitted now. We do want a final scientific report to be submitted at the end of the data analysis period of performance. As a minimum, the final report should include a summary of the scientific

DATA TAPE FORMAT DEVELOPMENT
RECEIVE PRELIMINARY TAPE FORMAT PROPOSALS FROM EXPERIMENTERS.
 FEASIBLE FORMAT REQUESTS. COMMUNICATE WITH INDIVIDUAL EXPERIMENTERS AS NECESSARY.
DESIGN DETAILED DATA TAPE FORMATS FOR EACH EXPERIMENTER.
SUBMIT FORMATS TO EXPERIMENTERS FOR FINAL APPROVAL.
EVALUATE ALL FORMAT PROPOSALS FOR FEASIBILITY.
INCORPORATE FEASIBLE FORMAT REQUESTS INTO IPD DATA PROCESSING SYSTEM.
$*$
\bullet
-
DATA PROCESSING GROUPS CONSIST OF 7 DAYS OF DATA, SUBDIVIDED INTO FILES.

FILES MAY OR MAY NOT OVERLAP.
ISEE-A AND ISEE-B DATA ARE ON SEPARATE SETS OF TAPES, AND MIGHT NOT COVER EXACTLY.

403
± 03

103 the same time period.

- EACH LOGICAL RECORD CORRESPONDS TO ONE SUBCOM SEQUENCE.?

$$
\text { ONE LOGICAL RECORD PER MINUTE } 10 \text { PER TNDE OI O }
$$

 TAPE

SEPARATE TAPES FOR A, B, AND C.
ORBIT / ATTITUDE MCE TAPE START OF

> SEPARATION VECTOR,

\therefore

* - -2
ONE TAPE PER 7-DAY DATA GROUP.
ONE FILE PER TAPE:
ORBIT / ATTITUDE MCE TAPE
LABEL AND DATA RECORDS IN USER COMPATIBLE FI OATIMIR DOMIT A

DATA POOL TAPE DEVELOPMENT

.

\section*{DETAILED DESIGN OF DATA POOL PROCESSING SYSTEM.}

DETERMINE GENERAL CONTENTS OF DATA POOL TAPE.
RECEIVE PRELIMINARY ALGORITHMS FROM EXPERIMENTERS.

DETAILED DESIGN OF DATA POOL RECORD FORMAT.

,
REVISE DETAILED DATA POOL FORMAT AS NECESSARY.

0

DATA POOL TAPE

ONE TAPE PER 7.DAY DATA GROUP.

FILE LABEL IS IN BINARY INTEGER, IN USER WORD LENGTH.
DATA POOL QUANTITIES ARE IN
ENGTH.

DATA POOL TAPE

DATA POOL QUANTTIES FRO鞇 P觻IMINARY LCORITHMS

ORIGINAL PROPOSAL	PRELIMINARY ALGQRITHM
1）MAGNETIC FIELD， 3 COMPONENTS／MIN （3 WORDS）	RUSSELL 3 SPIN CORRECTED MAGNETIC FIELD COORDINATES，PAYLOAD COORD＇S． （1 MINUTE INTERVALS） 26 PARAMETERS （HOURLY）
2）PLASMA－VELOCITY， DENSITY，TEMPER－ Ature． （3 WORDS）	BAME 4．ELECTRON ENERGY LEVELS 1 ION PSEUDO DENSITY 1 ION AVERAGE DENSITY 1 SOLAR WIND PEAK SPEED 1 SOLAR WIND PSEUDO DENSITY （5 MINUTE INTERVALS）
3） 20.50 keV AND $50.100 \mathrm{keV}$ ELECTRONS AND PROTONS （4 WORDS）	WILLIAMS 1.32 .50 keV e＇s $12250 \mathrm{keV} \mathrm{p}^{\prime} \mathrm{s}$ 180.126 keV 甲＇s （5 MINUTE WTERVALS）

*SIMPSON WAS TO HAVE PROVVIDEO THESE.
data pool quantities $+$

TESTING AND VERIFICATION

EXPERIMENT DATA TAPES

- SPACECRAFT INTEGRATION
- decom test tapes to all experimenters.
- TAPE DUMPS OF SAMPLE RECORDS.

THERMAL-VACUUM TEST

- DECOM TEST TAPES TO ALL EXPERIMENTERS.
- TAPE DUMPS OF SAMPLE RECORDS.
* standardization of formats minimizes errors.

DATA POOL ALGORITHMS

- SPACECRAFT INTEGRATION AND THERMAL-VACUUM TESTS
- DATA POOL TEST TAPE TO EACH EXPERIMENTER.
- PRINTED LISTING OF DATA POOL QUANTITIES.

SIMULATED DATA

- PRODUCE AND SHIP DATA POOL TAPES FROM SIMULATED TELEMETRY INPUT SUPPLIED BY EXPERIMENTERS (VIA CARDS, TAPE).
- COMPARE OUTPUT TO PREDICTED OUTPUT AS DETERMINED BY EXPERIMENTER.
- live data
- 8-WEEK POSTLAUNCH VERIFICATION PERIOD.

ISEE-C DAJA FLOW

The LOG reflects the statios aned kistory of all pluses of the data processing.

- copis eor deata into permanat lisrang

FLOW CHART OF ISEE-C ENCyCLOPEDIA GENERATOR

- reuel screince $\&$ eugiveering deta from EDR recordo; unpach rates; despatch dater iuto subcem slocks
- monitors data guality and centinuitys status change, celisration data. (Marks up decten withinsubcem slock)
- estaslish chapter and volume bonudenies; creates headens.
- outputs all deats vinto verse structure. Summanizp vates, celculate spin peivice, buites conicidence condition merp.

* $+*$
$* * *$

 OPT IONS IN EFFECT ***

*** OPTIONS IN EFFECT $* * *$ SPECIFIED-MEMBERS

 NOUPDTE, NOSSI, LINECNT = 080 , EROPT = ACC, SELECT
 LIBRARIES*
01 - VOL=DISKOO DSN=ZEEKEOLIB.CNTL
$D S$ ORG $=P O$
-4MAR78 13.47007-VOL=DISK00, DSN=ZBEKEOLIB.CNTL


```
C4MART8 13047007-VOL=OISKOO,DSN=ZBEKEOLIG.CNTL
                    DSN=ZBEKE.LHP.CNTL
                    ZBGKG. LIB.(NTL (PROLUGA)
```



```
    * I ROUT INE:
    * 2. SYSTEM, SATELLITE, VERSION:
    3. ENGLISH NAME:
    4. LANGUAGE:
                            LEVEL G RELEASE 21MAR76 360/91/75 OSMMVT
* PURPOSE:
    PUPPOSE:
        CALLING SEQUENCE:
        ARGUMENT TYPE IJO DESCRIPTION
    7. NOTES:
            7AE RESTRICTIONS:
            7B% SPECIAKmamEAFURES*
    8. VARI ABLES:
        BAO LDCAL
        BLE
        TYPE
                        DE SCRIPTION
```

.

$$
11 / 3 / 78
$$

ISEE-C MTE. Wint t+CASO, NAND, DON

Items to be dine:
(1) Indication of ststem A or Ststem B?

- for Thermistor measuvements.
(2) Note that VLat Avaley is not wovking and is not eepecter to work.
IJ (3) Woull like pitat plots of gaich-lach data. Tines?
(4) ENCGY - ANA and DIG werds
(1) - weed estimite of overkeal nowo
- centinne with coment processing
D) (5) Mrrgar Progetm -
overlap hardeny: A 2 vol's \& same vel $\#$:
- pich volume with betten gualitt
- if same qualit, pich wits fucve dete.
(b) Get cept of design dor. for tacho.
\square (7) Need usar guide \& reguest form for Matvix Praguan.
1] (8) Iuiticite Data Ted action.
D) (9) Flux Displsy -
- rate desplay capasilitz
- womenclatrie vesclued?
- Nard \& Don to auslyze flase ustrices
(1) Flare unatrice to $9 / 23178$ at 09:30. 5 J imp finxplot - iüput scaling factiv.

ESTTMATR OF OURZARSSOF S/C RORSS:

- USING SXAZT OF 2 Eh FILI AS TXAMPLAS

$s: c \omega$

13 surerny

$$
\text { ASS4n } \quad(13 \times 6 j y+3)
$$

$$
\frac{(13 \times 65 y+3)}{\times 64}
$$

$$
\begin{array}{|c|cc|c}
00001000 & 00100000 & 1100 & 0000 \\
00010000 & 00000100 & 00000011
\end{array}
$$

HET Status Probien

$$
\angle E T
$$

INSTRTT CODE CHANGRE, wTO
AAC4HD

OUTSTANOING PROBLRMS:
(1) $5 N C G E N$

Mupkasce raady to flip syatul
STILL RNCGTN
trans chrch on sectints (cerractrs tabias in drezns chace of ciatplata) AnAltzar EnHANCRMFATD
(2) EDRSAV - date own
(3) Loq preblrms ~ oke.
(1) MKRGE - NAND
(5) KORLIST
(6) KNCY LIST - CATLDS UIST

GRNTVAL S OURCE
LIB. CNT
(7)
FLUXPLOT - NAND
(8) CALBRATMD tAPM RKRERMAttir - PAM?
(9) MAtax Dispcoy
(10) ANISOtropt DISRIAY

$[$

$$
\begin{aligned}
& \text { SAO, USERGIDS, JTKJ } \\
& \text { [SAY, 1, D, NNJC }
\end{aligned}
$$

iskit.car
FFlcatjcl Fllatriss fluats Fixx

* TrSJ ROUTINK FLR FLIAT AND FIX MACROS
\because MACRO
FLUATT \&GPR, \&FPR, \&AREA
IF (LTR, $G G P R, G G P R, P)$
ST GGPR, $\dot{C} A R$ हA. +12
LD GFPR, gARKA
AD $F F P R, \angle A R R A+8$
ELSK
LCR $G G P R, S G P R$
ST \& $G \in P R, G A R T A+12$
LD GKPR, GARRA
AD $\quad \operatorname{ARPR}, \operatorname{AR} A R A+8$
LCDR GFAR, SIFPR
FI
MFND
MACRO
FIXX \&GPR, \&FPR, \&ARRA
IF (LTDR, GFPR, $A F P R, P$)
$A W R$ \&FPR, $A A R E A$
STD SFPR, SARRA. +16
$L \quad$ GGPR, \&ARSA. +20
ELSE
LCDR $A F P R$, $S F P R$
AWR GFPR, gARKA
StS GFPR, GARKA. +16
$L \quad$ LCR \quad \& GPR, $G G P R A$
FI
MENS
Funcenvi

$$
\begin{aligned}
& D S \quad 0 D \\
& D C \quad x^{\prime}+F^{\prime}, 7 x^{\prime} 00^{\prime} \\
& D C x^{\prime}+5,7 x^{\prime} 001 \\
& D S \quad D
\end{aligned}
$$

$$
\begin{aligned}
& \text { FlCATT BI, O, rNocenve } \\
& \text { MXX }
\end{aligned}
$$

Print nogen
FLOATKST PRAC LI-KAbR = (OF, (siced)

大

$$
\begin{array}{lll}
5 n & 1,1 \\
52 & 2, & 2 \\
\angle A & 3,20
\end{array}
$$

Do witlcr, (CR, $, 3,2 y)$
$-$
LD 2, ANPUT (2)

$$
F(x X, 6,2 \text {, } 5 \sim D C O N T
$$

ST 6, AUTPUT (1)

Floatt 6, 0 , Buocenvt
STD 0, Aoutput (2)

$$
\text { LA } 1, y(1)
$$

$$
L A \quad 2,8(2)
$$

OD

$$
\begin{aligned}
& \text { ABGND } 22 \text {, DuMP } \\
& \text { CORP }
\end{aligned}
$$

H		
inPuT	$D C$	$F^{\prime} 0^{\prime}$
	$D C$	$F^{\prime} 1^{\prime}$
	$D C$	$F^{\prime} 2000000000^{\prime}$
	$D C$	$F^{\prime}-11$
OUPPUT	$F^{\prime}-2000000000^{\prime}$	
FIXPUT	$D S$	$5 D^{\prime}$
ANPGT	$D C$	$D^{\prime} 0.0^{\prime}$
	$D C$	$D^{\prime}+2.5^{\prime}$
	$D C$	$D^{\prime} 16777216.25^{\prime}$

$$
\begin{aligned}
& \text { L } 4 \text {, input (} 1 \text {) } \\
& \text { FLOAT } 4,0 \text {, ENDCENT } \\
& \text { STD O, OUTPUT (2) } \\
& \text { L } \uparrow \quad 2,8(2) \\
& \text { Fixx } 5,0 \text {, } 6 \text { nscen } V \text { T } \\
& \text { ST 5, OUFIXPL (1) }
\end{aligned}
$$

\qquad

Kisw \leftarrow AssconBla!
(B) 1 1PRASCTS)

15EE-C FNGGGN PRORGMS

(2) SMC Neq thanjermars. (ANatats)

CH. intae.
(0) 4 venck

(B) Ac.uba thent
sk, 0 is to Lratuk

 kath y Sach \therefore and cketah plofgre

(b) spara consu , mas

$$
\begin{aligned}
& \text { THase cit 61,62,6.3 }
\end{aligned}
$$ (ourrint) Anato , the Aurnabe

(b) Upokher-int lrb. Mrath hathtrac. an what foph (a+n+abor)
1(2) OGaRMI ANO asmaty … owly chone In apl. Bayder
(8) TRNA CHRCL MAP RQRN, TRTATS


```
        00060 +
        OOOTO % NANE (口NEFANOSETCL
        GONTENTE
        00080 ;
        FRITNAME GIUFIEE
        *Mハーe de心!
        LOIOCATME
        promedufes
```



```
        user maddes
        load modules nt" provemms releted fo
        data promesedrm
        TGud modules ar monsmems related tu
        datm erim!rsis
    -
```



```
                            Fromedures
    0200 %
        00%40% ENCGFN.1OAD
        FFOLESE:IMAC
        logn modutes af progemms melatery bu
        ugte promessing
lowd modules af mragrams meloted tu
    |atm s|m!%Sis
```



```
    Fromedures
    00230%
    0050 *
    00260 *
                                LTB,GLET
        SEFRTIENTEXT
        &ab, ENTL
```



```
        002E0 %
        00200 # NOTES:
        00800 *
        OOETO * the same mame lomated in UEEFGIDE,TEXT, LIE,GNTL, the
```



```
        005%0 *
```


$11 / 178$

-

Paed modules)

$$
\begin{aligned}
& \text { ams elated to } \\
& \text { raceseins } \\
& \text { me pelated ta } \\
& \text { anelysis } \\
& \text { fie and pelod } \\
& \text { dures }
\end{aligned}
$$

s.ms relatedtu maceseln
ims releted tw anelyeis
fire and relodit dures

ndine member of
THin. the
IBT.

15E5-C
 REVISED AABLR FER RSUM.

3160

RSDISPHS EqU *

$$
\begin{aligned}
& D C \quad H^{\prime} 2112^{\prime} 1248^{\prime}, 3 H^{\prime} 2256,1392^{\prime} \\
& D C \quad H^{\prime} 2112,1248^{\prime}, 3 H^{\prime} 2256,1392^{\prime} \\
& D C \quad 2 H^{\prime} 1536,672,1680,816,1824,960,1968,1104^{\prime}
\end{aligned}
$$

*

$D C H^{\prime} 2128,1264^{\prime}, 3 H^{\prime} 2272,1408^{\prime}$
$D C H^{\prime} 2128,1264,3 H^{\prime} 2272,1408^{\prime}$ $D C 2 H^{\prime} 1552,688,1696, \Lambda^{1840,976}, 1984,1120^{\prime}$ $*$
$\Delta C \quad H^{\prime} 2144,1280,{ }^{\prime}, 3 H^{\prime} 2288,1424^{\prime}$,
$D C H^{\prime} 2144,1280^{\circ}, 3 H_{8}^{\prime} 2288,1424^{\prime}$
$D C \quad 2 H^{\prime} 1568,704,1712^{848} \wedge^{1856}, 992,2000,1136^{\prime}$
*
$D C H^{\prime} 2160,1296{ }^{\prime}, 3 H^{\prime} 2304,1440^{\prime}$
OC H' $2160,1286,1,3 H^{\prime}, 2304,1440^{\circ}$
$D C \quad 2 H^{\prime} 1584,720,1728, A^{864} / 872,1008,2016,1152^{\prime}$
$*$
$\%$

$7730 \quad \begin{aligned} & D C \quad H^{\prime} 222 y, 1360^{\prime}, 3 H^{\prime} 928,268,1504^{\prime}\end{aligned}$

TRGNJ CHRCK:

$$
\operatorname{LR} C A L
$$

pASS CHCOC

LEGAL PASS $1,2,3,7, B$
LEGAL FAIL $5, A, F$
ILLKGA Conbus $4,6,8,9, C, D, E$

1SER-c tape:

$(55058,1625)$
$V \leq T G \quad 911 / 251 / 6: 26 \quad 9 / 18$ dok+ toly

$$
\begin{array}{rl}
Q M-226 / 13: 21: 53 & 8 / 14 / 78 \\
-13: 26: 09 &
\end{array}
$$

Ang 14, 13:21-1326

ViEt cal con: Aug 14, 13:21-13:26
(1 18Didy 1,29) covers $78 / 8 / 14$ 12:39-1438
Drimnafa event:
(Q43267,68) cevers 78/9/8 1502-1700

$$
\begin{aligned}
& 1 \text { page/vecand } \\
& 1 \text { reecal/32 see. } \\
& 2 \mathrm{HR} \text { - } 120 \text { min } \sim 240 \text { PPS. }
\end{aligned}
$$

```
qed 'seicc.encgenz.asm(anbump)"
```

QED
100010 ANBUMP PROE SAVE $=14$

$00025 *$ ISEE-L ANALYZER --- ANBUMF
OOO29* ISEE-E ANALYZER -T ANBIMP
00040 * RESET ENNEXTSR TO ENKEEF SUBCOMS FROM THE END OF THE CURFENT
00050 * VOLUME.
00060 * IF ANALYZER IS FINISHED (ANUOLEND $=$ ENNEXTSW), SET ENANDONE $=1$
00065 *

00080 L 3,ANVOLEND
00090 USING SUBCOM, 3
00100 IF ($\mathrm{C}, 3, \mathrm{ENNEXTSW}, \mathrm{EQ}) \quad$ IF EOU $=$ EaI
00101 IF (LLI, ENCDAT, YES, ER) AND IF STILL DATA TO FEAD
00103 - ST 3, ENNEXTSR RESET QUEUE FOINTERS
00104
MSGMAE UNIT=ENPRUNIT, *
$00105 \quad{ }^{2}$ FORM='("SUBCOM QUEUE FLUSHED")"
00106
00107
00108
00109
00130
00140
00150
00160
00170
00180
00190
00200
00201
00202
00203
00204
00205
00210
00220
00230 *
00240 CORF
ENI OF DATA

$$
\text { Fin } \operatorname{Hi} \quad \text { Pntgil }
$$

(1) IF NO GUOD DASA AND
(A) ENCDAT = Y 5 ,
 * is in CHin vol =
(B) GOCDAS $=N D$, vommbine she bmamorn = VK

ANBump

$$
\begin{aligned}
& \text { If (Anvocend }=\text { NTRTS } \omega \text {) } \\
& \text { if (} \operatorname{INCAAT}=+\operatorname{TH} \text {) } \\
& \text { sit navish }=\text { naxtsh } \\
& \text { rels } \\
& \text { stet ruanmer = 4 as } \\
& \text { MSG }
\end{aligned}
$$

ELS

$$
F I
$$

ISEE-C Design Considentin
(1) HET coururanal staters

In the coumani status bits, "delete AS aualfsis" meam that there is wo aucalasis of A-stopping PHA everts, doth high gain and low gain. Theze" delefa" Sits have wo effect on the haudling of rates data.
(2) PHA event analysis

The following schene should se used is PHA event analysis:
A.) If the event is padded, maik es padled FF in map, no sort.

Fo then mank as puch in uap, wo sort.
C.) If niel ovent 00
 mark as null in map., ko sout.
F8 D.) It unaccoptasfe duter qualitit mark as unacceptrgle is mapt, ko sott.
E.) Fise, maik as event type in usp, sort in venses.

$145 \mathrm{dt} /$ weele for 1 word *TBD. $\frac{n}{n}$

ISEE-C Staties repat is of 6/20/78

1SEE-C Jtems
(1) HET SuScem-

We shumel preserve 55 in the $H E J$ subcon.
(2) VLET PAA event tipeites.

Event	rate
ETO	$D \Sigma 2$
$E T 1$	$(D \Sigma 1-D \Sigma 2)$

Still mot sue whethen to incluct 2 rates with the VLET-I and VLnJ-才 ETI PHA events. How does Voyagen handle such case? motrix plots inducle many rates?
(3) Temperature X voltase cenbersicis.

We shoved inchuch the ceuvented valas of the analog parametas on the ency tepe.

Hats, virts pur $\Rightarrow 20 \mathrm{mV} /$ ceunt

$$
(0-255 \rightarrow 0-5.1 \text { volts })
$$

Hojs, virus thronister \Rightarrow see tasle.
virs $\pm 6, \pm 12$ vorts \Rightarrow aucthin shect (G.Porreia) VLoN thamistan \Rightarrow ?
(4) Quich look tapes
(5) cmo sits

$$
\left.\begin{array}{l}
\text { MSCCC } \\
360 \\
\text { intencests }
\end{array}\right\}
$$

HET PULSE COMMAND (088) -TURNS INTERNAL

HET SERINV EOMO Comano
22
$6 / 5178$

DELETE C1 cominuand sets C1 range lit in try field 1!?? No?

SET BIT 49- HETA \rightarrow GI SN

IF $C O 47=0 \Rightarrow$ WET- $\mathcal{C N}$ SET BY BIT $\angle 19$ CO $48=0 \Rightarrow$ HET-2 AN SET BY GT SO

$$
\begin{gathered}
\text { Norman fiats } \begin{array}{c}
1-46=0 \\
4=42=1
\end{array} \\
\text { HeNs Par MF GB, step } 52: \quad>2 \frac{1}{2} \text { wants is on }
\end{gathered}
$$

$$
\begin{aligned}
& 12.255 \rightarrow \text { S.1.ed vold } \\
& \text { NANS - V2+AZM DOU DLI RATKS }
\end{aligned}
$$

$$
\begin{aligned}
& M 5 O C C \quad \times 05 \times 130 \rightarrow P シ P-11 \\
& \text { NULTIVSAT CONT ramez }
\end{aligned}
$$

VLET Valtage Convision
$x_{i}=$ - Kit numbit of dijetizit onaly
readut (astume convision
lange $0-5.11$ valte)
$V_{i}=$-diaplayed compurted number (volt t_{2})

Dhen:

$$
\begin{aligned}
& r_{\phi}=0.06 x_{\phi} \text { valts } \\
& v_{1}=0.04 x_{1} \text { valts } \\
& v_{6}=0.4 x_{6}-0.44 x_{1} \text { vaite } \\
& v_{7}=\frac{0.4 x_{7}-0.66 x_{\phi}}{9} \text { valte }
\end{aligned}
$$

$$
a^{*} \quad-x x \cdot x+3
$$

vurts staths:

1) Subcon.
if ingonsirgint, throw cup hands
2) PHA TNOTBC,

IF in AT ALL, RIRERT AS ON.
3) CAL AlCON
if on AT ALL, RRPLRT AS ON
4) $\mathrm{CAL} S+4 n^{5}$ if incensistent, titren up manas
5) Plat runtit tate BITS

ISEE-C ItemS -
1.) EDR tapes -

The file header recon d is of the same size as call other playsical reaves (3528 bytes). The "GSEC tag" is sinipty the fill late recent in 36 -sit wand format. Inpariinias, the first 16 -Sit halfuonl is zeno, which would distinguish it from the experimenter id. number (33).

The data is in FB format. The last 36 -Sit won (or for om purposes, the last 32 -dig $w o-d$) is a pirysical reeord cencot. It's value is zero tor the file leader record, aud $1,2,3, \ldots$ for subsequent dental recode.
2.) Spacecraft dock -

In tonally, the spacecraft clock "ticks" once every $\frac{1}{2}$ second, and vecychas evert 97 days $\left(\approx 16,770,000\right.$ ticks or $\left.2^{24}\right)$.
The dock we reaclont, howeon, bras seen sampled from the internal clack based an the sit rate. Thus the following hold, for any sit rate:

64 bloch counts/ 64 ut shock
9) days \rightarrow dadivectele
3.) Sectored Rats -

The following numson of spins one summed:
$\begin{array}{ccccc}\text { At } & 2048 \text { BPS, } & 8 \text { spins summed. } \\ " & 1024 & 46 & 16 & " \\ " & 512 & 4 & 32 & "\end{array}$
$-D \leq$.

1) VLet staths in cat. inxio.
(status CHANG? \rightarrow ven CG?)
Tilvo rat RATI tapi RGZ VCat plat rurints.
$\binom{y_{3}}{3}$ presence (55) ?
2) GSFC \&AG IDENTITY?
(b) MAOLC in Guplota ctcor co surcone?

pll Hrader in car blech wita 3 rullas lotical rageras
 on is ist bloch Flai Hestorn +3 logez nそurs.

ISEE-C Items
(1) HET suscom-

We should presenve 55 in the $H E T$ subcon.
(2) VLET DHA event treites.

event	route
ET0	$D \Sigma 2$
$E T 1$	$(D \Sigma 1-D \Sigma 2)$

Still mot sure ibethen to ricluch 2 rate's with the VLETHI and VLRT-T ETI PHA events. How does vorajer hancle such care? Motvix plats incluche many rates?
(3) Temperature A voltase cecversich.

We shovel nichucle the ceuverted vales of the analog panametas on the ency tape.

Hats, viets pur $\Rightarrow 20 \mathrm{mV} /$ ceunt

$$
(0-255 \rightarrow 0-5.1 \text { volt.5) }
$$

Hros, viros titanister \Rightarrow see tasle.
$V i n \sigma \pm 6, \pm 12$ voHs \Rightarrow aucthashect (G.porreia)
viove thenmistoks \Rightarrow ?
(4) Quics loote tapes
(5) cmo sity

$$
\left.\begin{array}{l}
\text { MSOCC } \\
360 \\
\text { interchests }
\end{array}\right\}
$$

NET PULSE COMMAND (P88) -TURNS INTERNAL SER To 1 B B THE Wet Servo commune. MET SERIN 22

DELETE C1 commenond sets C1 range lit in trg field to 1!?? NO?

SET BIT 49- HETA \rightarrow GI GN

If $C D 47=0 \Rightarrow$ HET- 1 GN SET BY BIT 49 $C O 48=0 \Rightarrow$ HET-2 GN SET BY UT SO

Normot Stan $1-46=0$

$$
4=48=1
$$

hets pur mF 58, staps5: $72 \frac{1}{2}$ vutb bon

$10.255 \rightarrow 5.18 / x$ veir]

$$
\begin{aligned}
& \text { NANS - VItARM Dougle RATHS } \\
& \text { MAY } 4 \times \text { PO, WANK CNLX } r \text { T RAGT? } \\
& \text { MSOCC } \\
& \times 05>130 \rightarrow P 2 p-11 \\
& \text { MITI-SAT CONT comat }
\end{aligned}
$$

VLET Valtage Connusion
$x_{i}=$ sfit number of dijetizite analy readrut (assume convusion range $0-5.11$ vaites)
$V_{i}=$ - displayed compicted number (valtr)

Dhen:

$$
\begin{aligned}
& r_{\phi}=0.06 x_{\phi} \text { valts } \\
& r_{1}=0.04 x_{1} \text { valts } \\
& r_{6}=0.4 x_{6}-0.44 x_{1} \text { valts } \\
& r_{7}=\frac{0.4 x_{7}-0.66 x_{\phi}}{9} \text { valt2 }
\end{aligned}
$$

$$
4^{*} \quad x x \cdot x+5
$$

VLSTS Staths:

1) subcom.

IF INCONSisjout, Throw Le AMNDS
2) PHA $N \sim A B\left(r_{1}\right.$

IF CN AT ALL, BRRERT AS ON.
3) $C A C$ ALCO

IV ON AT ALC, RRPLRT AS ON
4) $\operatorname{cAL} 5+A n 5$

IF INCOASISEN, Thtrew up NANAf
5) Plis ravant lat BuTs

$$
2048 \mathrm{BPS}
$$

RTADR - PAM
15月E.C
倍~itin - rid
AnAltzr- \rightarrow rifr
output - nu-igi
Questions:
Ttcito- 1) What is the natme of the celisration data? IS HET and VLEG, calisration separzte?
2.) Do we set test trops from JPL?
3.) Do we want is put ael of wris $61,62,63$, $59,59,122$ onto Enct tape?
(sepanate vesse on elupter header?)
4.) Keep raw rats vase?
51) In PHA verses, do we need move than 1 event type rate? evcan we use the Rate Summeny reise?
6.) Sun DATA quality thags? Tinesuclis flegs?
7.) Is thene a sit of Hiost situw sai vats - singls.
8.) Fin flay
cse. 1,) Can we oftovd 2 PHA historf uaps? or is sonoutin f^{2} DHA maps too cumserscme?
N. 1
1.) Aliguarent?

Need to know:
J - specitics of dutu surlits Llags (2 bits/frame)
D- Source of spin calcaletion (L.G)

- test tupes
- Lanucl faly $23^{\text {d }}$
- over lap sits
- Prar tajs: maicitain tine onden withi vase

PHA overflew: locks to zeco
iuitrall, set to 1 's,
(ane greaten than vorega)
NB, if zeros, uqtise us reukent
VLIT - lo Sy freeze ot all 1 is if on the IIS.7j mot passialie electrenicully
HET
PHA: NON-PiASMA Cencos cuere Lrtrons WIJA GSK DISAIAH (ereent "P̈)

MAINVAI~ VIAT SPAZES

Cenvientionsut ©~CLOAs

whblt aciacitt - No rureas accent sut cerrac*ABLTse versitich
NOT $\quad 1$
\rightarrow Datu rejection puestric
Hew does vixpen do it?
what about $2-3$ mr/rate vealcat.

Prinitiating erents (HCT) PRN: $B_{1} B_{2} C_{1}$
No regurient in $C_{2} C_{3} C_{4}$
Wiferph reguind C_{2}, C_{3}, C_{4} on,
Anis ~os true.
odel events is odd verse, a correst
vir σ

When is expenimient on or of
1.) Powen manis. in? (frovier on $W \pi y$) we wed a theshhid
2.) Are telescipe ensbie Sits an?
chech for if telcsope not enssleel are there non-ual aoento frem thent telercopo.
ucit

How to identif null readents.

$$
\begin{aligned}
& \text { on, in ories, ot then (Nuil?) } \\
& \text { Pior menite to vind } \gtrsim 4 \text { volts }
\end{aligned}
$$

CIMMAND Sxtans:
Stactus pat out

Sts. Maint. Progs Guide
I.

II,
A. $\quad \mathrm{H}-\mathrm{c}+6 \mathrm{GA})$

1. Initializes
2. Reader
3. Monitor
4. Analysis
σ_{1} Outpent

b. MLi. - dete struits, Cenven Buckes
B. Mraor - proluges
C. KDOCAG
D. SDRSAN - purlegnes

E, wiencis

ciso

$$
\left[\begin{array}{l}
\text { Reruour } \\
\text { Assigu }
\end{array}\right.
$$

Mots. w. Ttcho $5 / 18$

Haudont: Spin Syuchronos Cloch
Gorng thrn ency tape format:
PS. 3 - wed separate HKT \& VLat califuation sits HKT (vLK. $)$

On Alliow
can bit
telemethy

 CALStin ©

PHA deta sliffed Sy $2,4,6$ (a 8 wits VLRT) due to ild events:
\rightarrow Throw out \rightarrow 1st set of rates ofter date $54 p$ due to
avirar Statios uncertencing.
\rightarrow Throw cot 1 S上 i unt's worth of PHAt denth aften deter i.pap and aften CAL.

VION - CAL STAVI culf up during cal.
\rightarrow Chech validity of redemdent VITT subcoms t CA sit values.
\rightarrow Also jit rate validity Setween staths file heede. Tycho weeds: Guichis Virit HSiepg Gormsion

Need sit rostefor darl tino covection (see tovirt)
(1) wew chrpta cheret sit vite change
(2) ch. hearla will have sit vate.

Test taps:
A, Kugel

Tiven kines of vecons:
(1) deota (Sincuy) $64 \times 16 \times 8$ sits
(2) ASCII meSSape $\leq 80 \quad 5 y+\infty$
(3) Eof mark (delimit rums". FoV $=2$ Eof's)

Tycho has dupticiats.
800 BPI, whe recoul I.D, precediy leach filt.
Howard F. Cepien the topes.
Teor tapes fren IPD-tB! Set livited decta.
If feasisie, mecke GSr. desth into test turses

Manitor -

- mach up spins as wild
- Qenit iudude bul vates in sumieg

Serfome rute trond char - dere an E sectors.
\rightarrow Judude samued sectored ratis in rate summay vase

CH HEADZZ:
Aur spin
MAX DRU
\# ̧ud
H not guid

CMD
IF STAZF OR STP OR DAPA, 16 NORT 2 Full rescoces

if cho chindey, thaw ent 3 Bucker

Vand - If turn erp in, what happens? Vieg messy, Herck. - if ff, purmorita ff - Heren out 1 Masin tree
recte
4P-i - fleniked tro autenne pertten vant, une 88^{\prime}, ut 30^{\prime} dishe

spin measarements should lere 20 dreck
(use $10 \zeta_{\text {) }}$)
Use actul spin peive os mearivel for setoving,
$61,62,63$ Sic clech, stertes yop, cud vey
50. ANA SC \#1 temp

Plan: Save all DiE/\$ ANA swlem.

Date Quclity

Tine suclity -
UT is s / c trashit time (extrop. sach fron recein) IRD will swooth cot time dest fran manf statios ste duch diffs

3 thisis dene:

1) welsit cerretion to sic teousion
2) smoothing fit s corvestio
3) recuoublizatio to steudai
convenerder - if deches \& cerverted on oo em
11

- if deerdir, etterptel it paith indoeru

$$
\text { not - Sicutcolvertes } 10
$$

encuder - 10 also
no sil dede a Erani stme eurs datextel
[1] evors detertel.
959 \& brinat datn excellent
timesplig - Unc all hat giés lah. inctude ε of ead lovel ins DCk Suelisy
\rightarrow Thuiw out grah low detn
plan on being asleto pucess guies loch deta autsinh b worme pacescing. (ontier isg,ete)

Spin values:
\rightarrow ho reason to create new dupte, for spis put in ase spir ivane, maxion eciestr.

For now - plan to save all DIG ard ANA Sirbcon wovels on the ency taps design a wee verse.

Date Quality: 4 level :-
00 fill dicta

01 not encoded and enos letetel

$$
\begin{array}{lll}
\text { SpIN } & \text { DCnus } \\
& 19.75 \pm .2 \text { rpm } & 3.0075 \\
3.038 \pm .031 \text { see/ren. }
\end{array}
$$

DoC. Viftegen
reclo dath structs
desisn
tesx propysal.

AnAlterin -
treent dank in terus f "Sterths extels" (2 Slucho)
tabir 1．Dapa thes
DAAA tyPO

Cede
－Raw rets
1 CeInc．Cunditin hap
2 Rate Summary
3
PHA History
4
HET－I AST，HG
5
HNTA ASJ，LG
6

7 HIT－Y BSJ，LG
8
HNT－I PEN，HG
9 HKT－さ PEN，LG
$10-15$
HRN－（Sume es 4－S）
16
Vしたの一ざ，反丁。
17 ＝VL\＆T－土，rTJI
lo VLeTー边，ルJo
is viたJ－せ，にT 1
tabler 2. Cerncidfnet conaitera mafo
Ceincidere Ceurlitio Map

Tasle 5: Rede Summury Sleeh bection
Deteilled 15na.C Rates
(reaun so that siugles cend lest)

44-86 III. IV (same as 1-43, execent for HET-4)
87 V. VLEJ-1

$$
\begin{aligned}
& D_{I} D_{I} \bar{F} \varepsilon_{1} \\
& D_{I} D_{I I} \bar{F} \overline{\varepsilon_{2}} \\
& D_{I} D_{I} \bar{F} \varepsilon_{1} E_{1} \\
& D_{I} D_{I} \bar{F} \varepsilon_{1} \bar{\varepsilon}_{2} \\
& D_{I} D_{I I} \bar{F} \\
& D_{I} \\
& D_{ \pm} \\
& E \\
& F
\end{aligned}
$$

95
96-104 π (same as 87-95, ex Vor VCET-2)

$$
\begin{aligned}
& \text { 105-112 Sectored 边 HET-I } A_{1} A_{2} \overline{C_{4}} \overline{G_{1}} \overline{G_{2}} H G \text {. } \\
& 113-120 \\
& \text { 121-128 } \\
& \text { 129-136 } \\
& \text { 137-144 } \\
& 145-152 \\
& \frac{153-200}{201-208} \\
& \text { 209-216 } \\
& \text { 217-232 } \\
& \therefore B_{1} B_{2} C_{4} \bar{C}_{1} \overline{S B} \bar{G}_{1} \frac{G_{2}}{2} \\
& \text { VII. HRJ-J } A_{1} A_{2} S A \bar{e}_{4} \bar{G}_{3} \quad L G \\
& \therefore \quad B_{1} B_{2} S B \overline{C_{1}} \bar{G}_{2} \\
& \text { (X, X. (same as 105-15L, excont for HET-II) } \\
& \text { ㅊ. VしたJ-I } D_{ \pm} D_{\text {世 }} \bar{F} \sum_{1} \\
& \text { " } D_{ \pm} D_{a} \bar{F} \\
& \text { XII (same as 201-216, except for VLRT- } \mathbb{C} \text {) }
\end{aligned}
$$

Houreleeeping:

ANALO SUBCOM 1 , wond 58

$$
\begin{array}{lll}
\text { steps } & 51 & \text { Vlirts Herk. Diots } \\
52 & \text { HeJS Pwr Mow. } \\
53 & \text { viets Pwa Mon. }
\end{array}
$$

Analor sublem 2 , wonl 122

$$
\begin{array}{cll}
\text { step } 17 & \text { Hrits temp } \\
19 & \text { vifuts remp }
\end{array}
$$

Digited subeon ; will fs

$$
\begin{array}{cc}
\text { step } \\
4.3 \\
44 \\
4 T & \text { HET CMD SJAtus (SaScm, gain, oras) }
\end{array}
$$

Nound Scieisifi frume
wond 5-11

Need, additionaly, spis info.

PHA evects:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~T}: \\
& \text { PHA, } 12 \text { sin } \\
& \text { PWA } 12 \text { sis } \\
& \text { piats } 12 \mathrm{Jij} \\
& \text { tats } 12 \mathrm{sin} \\
& \text { ULNT: }
\end{aligned}
$$

Rets:

Het as	22 sifs	
Het seat	20	sity
viat ns,s	24	sify

ISEE-C Rates

Tycho -
Here ane sone items cencenumy the isrr-C IDS typos and the spacecuft.
(1) Could we find ont the first 16 Sits of the GSFC ta y on the fib e heada-veerd? Is it a fixed value?
[We would like to know this is oven to distinguish, in the first helfuord of and rewound on the input tape,
(1) a tile bead record, (2) a logical recon, (3) any thing else.]
NB. Schuriele says that the GSFC TAG would not Se" describes to the uses.
(2) $O \mathrm{~cm}$ understanding of the tape arganizatic is that each physical reed wills cervespcal th a major frame, and that' "file label recode will be the same length os the data veers which follow."

Thess we cencluche that the first physics reed of each tape will only cutein a file header veer. But is this tile hade physica reed filled out to the size of a logical date recent $(880$ byte) a to the size. of a physical data reed ($3528 s_{y}+s$). IS the record format on the tape vanialio $r, \ldots)$
alkel to ead plysicel reerd (see the "Sytes/reed" calculetico on the sape tount Mandet.
(3) Are then a fixed nunsa of spacecraft clocl counts per 64 mf Sloch (or por major frame)? If so, what is this counts value? Is this a Sit-rute deperdent guantity?
(4) We undartand that the spin period wiw se $19.75 \pm .2$ rpm, or $3.038 \pm .031$ sec/revilation. Is then a fixed mumber of spins pes 64 murio frame sloch (es 10?)? Is this a sit vate depenlent value?

CSC

 COMPUTER SCIENCES CORPOSATMONINTEROFFICE CORRESPONDENCE
to from J. Childs
subject Discussions with L. Gunshol and T. Von Rosenvinge on May 18,1978

The following items were discussed:
(1) Calibration Data

The HET and VLET systems may be calibrated independently. Hence, we need two bits in the chapter subject matter code to indicate CAL data from HET and/or VLET. Calibration data is enabled by the CAL ALLOW bit. Calibration data is generated when the CAL START bit (for VLET) or the CAL bit (for HET) is set. All calibration data must go in a separate chapter.
(2) Data Rejection

After CAL data, throw out the first eight minor frames worth of PHA data.
(3) Redundant Information

We should check the equivalence of the redundant VLET subcom and CAL bit values. The bit rate values should be verified with both the record header and the file header.

(4) Bit Rate

The bit rate value will be included in the chapter introduction. The following table is used to translate the bit rate indicator:

$$
\begin{aligned}
& 00-\text { other }(64 ?) \\
& 01-1024 \\
& 10-2048 \\
& 11-512
\end{aligned}
$$

A bit rate bit has been defined for the Chapter Subject Matter Code. If a bit rate change occurs, this will be cause for a new chapter. It is expected that a bit rate change will be accompanied by a data gap. It is also expected that we will see no scientific data transmitted at 64 bps .
(5) Test Tapes

We should expect test tapes from IPD shortly. We should also, however, be prepared to run GSE accelerator calibration data through the Encyclopedia Generator. The more realistic acceleration data should better aid in the testing of the program.

subject
Discussions with L. Gunshol and T. VonRosenvinge page 2 on May 18, 1978

(6) Additional Data Words

For now, we should plan to include all of MFW 61, 62, 63, 58, 59, and 122 on the encyclopedia tapes. We will define a new verse for these words. At a later date, we may be required to save only a subset of the above data.
(7) Data Quality Flags

There are two data quality flags per minor frame. The bit values mean the following:
00-fill data
01 - errors detected in the telemetry
10 - if encoded, no corrections made; if not encoded, no errors detected
11 - (encoded) no errors detected or errors corrected.
For rates to be summarized, only data quality 11 rate values should be included (for now). Hence, the data quality acceptance level should be set to 3 . All rates will be included in the raw rates verse, however.

The Chapter Introduction will include statistics on the data quality of all minor frames in the chapter.
(8) Time Quality Flags, Quicklook Data

We should accept all data in normal production except quicklook data (Time Quality Flag 00). The Chapter Introduction will include statistics on the time quality of all blocks in the chapter. We should be able to process quicklook data outside of the normal production system.
(9) Spin Values

The Chapter Introduction will include the following information concerning spin:

- the average spin period for the chapter
- the maximum deviation
- the number of "wild" readouts
- the number of "non-wild" readouts

Here we define a "wild" spin readout as one that is more than three standard deviations from the norm.

The monitor section of the encyclopedia generator will perform the check on spins, marking up the wild readouts appropriately.

$$
\mathrm{CSC}
$$

Those sectored rates which are measured in blocks with wild spin values should not be included in the summarized rates verse.
(10) Data Uncertainty due to incomplete status

When a change in HET status is detected in continuous data (reflecting a command), three blocks of data should be thrown out--the two blocks that contain the different status readouts and the intermediate block wherein irrelevant status is read out.

At both the beginning and end of a continuous data stream (i.e., after and before time gaps), two full blocks should be thrown out due to status uncertainty.
(11) Trend check on sectored rates

For sectored rates, the trend check must be applied to the sum of the sectored rate. ilntial
(12) Events

Again, to clarify --
legal PHA events are those PHA readouts that are recorded when both the telescope is on (i.e., has power) and the PHA is enabled for the telescope or event type. Ann煄 event for VLET is illegitimate if either the power is off or the PHA is disabled. A n event for HET is illegitimate if either the HET power is off or the corresponding event type is disabled.

(13) G_{1} Level

The HET hardware has been modified to allow separate deletion of the G_{1} term according to event type. The deletable G_{1} term for A-stopping and sectored rates will continue to be known as " G_{1} ". The deletable G_{1} term for B-stopping protons (register R2) shall be hereafter known as G_{1}^{\prime} (primed).

JDC:kag
DISTRIBUTION:
E. Eng
L. Gunshol
E. Ronish

P. Schuster
T. VonRosenvinge
restafliph cutpot tupe frumst. ($\{$ dats structe)

- VLng nats ~ Pus dete
- Exparl exsitzj vere -uo vipent a ovifer

-oversp at ror staje Brict. stage
- owly ane irjput formext
- rate simmanta hs to kadle sectual tingo
- datase strictures, tusles del diff,
rate dan os

$$
\begin{gathered}
\text { sublom } \\
\text { refint } \\
\text { sion }
\end{gathered} \stackrel{A}{\leftrightarrows} \underset{\text { unicuo }}{\leftrightarrows}
$$

A fix vaxe snumuizer. B for trenl cheos

1) Spurecrest dode fanit ob.
in phere!
then $C=0-100$:
2) reed to loch.et 2 Sits in wonel 63
(format sity in cembani refirte, to detanim if atrueaimf a scicutifi furet.
3) compans tsened whenex isimed (elc. calirhatas)
\qquad
4) preaichi of Monpuis vequiveliont
$0+\quad$ U, 8
cuside coelsp

Test thpe -

.541004 ,
califustien

- READra - vecy satelite Qapit
outpur - routing itslf will pussslx ust cheafe sat sisvontivo will
time: su/fert use but
nat weed to use FDSE a SIC doch sinis wo playfach a DMT, watn
\rightarrow (1) estaflish Ency foumat
(2) $\because \cdots$ subcom n

$$
\begin{aligned}
& \text { RR. (} 4 \text { ' subcoms } \times 42 \text {) } \times 4 \text { bytes } \\
& \text { CCM } 150 * 2 \text { butes } 300 \\
& \text { RSum (} 254 x \text {) } 16 \text { bytes } 4064 \\
& \text { Diaties (} 32 \times \text { subcoms) } \times 1 \text { butes }+16 \text { bibs } 976
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} 64 \times \text { Subcoms) } \times 8 \text { butes }=14 \text { veres }=15962
\end{aligned}
$$

$$
\begin{aligned}
& 30 \text { subcm/os mio } \\
& 38.236 \\
& \begin{array}{r}
\text { vor } \\
\text { ch } \\
\begin{array}{r}
228 \\
38.532
\end{array}
\end{array} \\
& \text { preverse }{ }^{23} 12 x \\
& 276 \\
& \text { de } \\
& \text { 38,808 } \\
& 12.5 \text { mish } \\
& 121 / 15 \mathrm{mu} . \\
& \text { 4'/hr } \\
& 190 \% \text { day }
\end{aligned}
$$

have problems which require the intervention of someone here at the Goddard Space Flight Center (GSFC)--that is my job and the members of the project are busy with ISEE-C as well as A and B.

Our meeting after the Western AGU at Berkeley in on, and Kinsey Anderson will inform you all of the details and agenda. He will be chairman, and I will be there, pending permission from the Goddard management. Please come with any relevant data so that we can make decisions about periods for special study.

Please do not forget to work on the description of your experiment: Perhaps I should mention again we need eleven double-spaced, typed pages (inclusive of diagrams) for each experiment: Approximately $1 / 3$ of this paper should describe the instrument. I will try to return your stuff to you as edited by Tycho and me, but if you don't get it to me in time, I will not be ablé to do so.
astly, the time will come when I will be asked to justify seeping ISEE turned on, etc. For this and other purposes, it would be most useful to get from each experimenter titles and abstracts of talks and publications for a file which I will start to be used only for this purpose. I hope you will comply with this request.

ISEE-C (Dr. von Rosenvinge)
I would like to begin by congratulating all the many people who worked so hard and well on both sides of the Atlantic to make ISEE 1 and 2 a success. You have provided very high standards to live up to for those of us working on ISEE-C. I only hope that we can do as well.

Now that data is starting to flow in it seems to be an appropriate time to remind you of the standard scales for time-history plots which have been adopted by the ISEE Project. The same standards are also being used by the IMS and by the Solar-Geophysical Data reports from Boulder. The basic scales are $0.8 \mathrm{~cm} /$ day for Bartels rotation plots, $1 \mathrm{~cm} / \mathrm{hr}$. for l -day plots, $6 \mathrm{~cm} / \mathrm{hr}$. for 4 -hour plots, and $12 \mathrm{~cm} / \mathrm{hr}$. for 2 -hour plots, A magnification of 18.25 should be used for microfilm. Adhering to these standards may cause some of you some trouble; however, I believe that doing so is the easiest, cheapest, and most effective step which can be taken to facilitate correlave data analysis.

Some four different experiments on ISEE 1 and 2 have some sunlight sensitivity and in one case the affected telescopes are a total loss. Experimenters were cautioned about this possibility in the March/April 1977 Newsletter, You have all received a recent telegram on this subject as well. Please take it seriously and satisfy yourselves that you don't have a problem. This includes a solar heating problem before and during the spacecraft slow roll at launch.

A Critical Design Review was held at Fairchild and a number of points of interest came up. One is that no experimenter responded to Fairchild's request for inputs regarding the sun-spin test. This is perhaps remarkable considering the importance of the sun-pulse to many of you. To review the sun-pulse may be derived from either the Panoramic Attitude Sensor System (PAS) or from the Fine Sun Sensor System (FSS). The PAS and FSS systems are located in facets 6 and 14 respectively, 180° apart. However, each is canted by $22-1 / 2^{\circ}$ and the sun-pulse from the FSS is delayed by 180° so that the sun-pulse is generated when sunlight is normally incident on facet 5 (actually the PAS pulse comes 0.35° later than this). The facets are numbered according to a right-hand rule, the rotation of the spacecraft follows a right-hand rule and the spin axis will point to the North Ecliptic pole $\pm 1^{\circ}$. Other points include: Anderson wants to substitute a $\overline{\mathrm{Cd}} 109$ source in his X-ray experiment for the $\mathrm{AM}^{2} 41$ source; consideration is being given to having the thermal vacuum test before the EMC and vibration tests; adherence to schedule is being made difficult by having experiments out of the spacecraft, late experimenter response to requests for information such as wire-list checks, long/short form test requirements, etc, and continued MICOS problems; the Project Office does not know for sure how many experiments plan to be out during the calibration period, I have requested that Vu-Graphs from the review be sent to each of you.

It has been decided to eliminate the attitude/orbit tape. The spacecraft position will be placed on experimenter tapes in the Geocentric Solar Ecliptic coordinate system only. These coordinates will result from a transformation of GEI coordinates to GSE coordinates by John Schmidt. Checks on his algorithm indicate position errors 150 km and angular position errors of 20 arc seconds resulting from this transformation. His algorithm uses the obliquity of date, not the mean annual obliquity. The spacecraft attitude will normally only be determined once a month when in the halo orbit. This will be reported on a form, a preliminary version of which is enclosed in the Newsletter as attachment 3.

VLET SECTO

HET
B-STOPPING SECTORS

* SPACECRAFT WORDS SRI

SUSCWORD DS 96 F
ME58,59,60,61,62,122 HORDS
SULEN EQU $\ddagger-S U B C O M$
 MEND
*** END OF MEMBER *** 83 RECORDS PROCESSED

```
01J0N78 15.45.45 - VOL=DISK02, DSN=ZBPAS.ISEE.CNTL
```

MACRO
VOLINT
gBLA EVOLININ

- VOLINT ANOP

VOLINT DSECT

VOLQME INTRODUCTION DSECT FOR ISEE-C ENCY DATA BASE.
AFTER VOYAGER VOLINT - PAS


```
01JUN78 15.45.45 - VOL=DISKO2, DSN=ZBPAS.ISEE.CNTE
\begin{tabular}{|c|c|c|c|c|}
\hline C日GETTH & DS & H & & HETS THEREISTOR \\
\hline CEVL ETTY & DS & H & & VLETS THERMISTOR \\
\hline CHBITR & DS & H \(00000{ }^{\text {BTT }}\) & RATE & \\
\hline & EOU & B* 00000000 & & 64 BPS \\
\hline & EOU & B:00000001: & & 1024 BPS \\
\hline & EQU & B'00000010: & & 2048 \\
\hline & EOU & \(B^{*} 00000011^{\prime}\) & & 512 BPS \\
\hline & DS &  & ARE & \\
\hline CEEND & \[
\begin{aligned}
& \text { BQU } \\
& \text { PRINR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { *-CHINT } \\
& \text { NOGEN }
\end{aligned}
\] & & \\
\hline & MEND & & & \\
\hline
\end{tabular}



```

01AUG78 14.16.26 - VOL=K3SCR2, DSN=FNCMCB.BLOCK.DATA

```

```


[^0]: ＊Drawing labelled TYH High Energy Telescope，ISEE－C Telemetry Format，p． 12. ＋Drawing labelled ISEE HET Rate Table，p． 13.

