
HUGHES STX CORPORATION

Introduction
to the

Software Engineering
Guidebook

Pradip Sitaram
Hughes STX Corporation

September 14, 1995

Hughes STX Proprietary

rn
Purpose 81 Scope of this presentation H U M S S T X C ~ ~ H

Provide some background and historical information
Describe organizational entities
Terminology
High-level overview of the Guidebook
First step in Software Engineering Training

Overview of the other phases of development
Overview of Software Project Management activities
Overview of Software Support activities
Feedback

- Requirements Engineering

Pndiv Sltanrn

Background Information

SWEl - Software Excellence Initiative (Ken Klenk)
- Pete Mumford - Chairperson
- Focus groups' Point3 of Contact
- Division Representatives
- Business Development Representative
- Training coordinator

Focus groups
- SEPG - Software Engineering Process Group (contact - Pradip Sitaram)

- SEL - Software Engineering Laboratory (contact - Temp Johnson)

- CSSE - Center for Software and Systems Excellence (contact - TBD)

- Metrics
- Training
- and other groups as needed

I) To train and guide software developers in software engineering principles

) I To provide hardware and software resources

'1 Facilitate technology transfer and support special interest groups (SIGs)

Pndlp Sitaram

Page 1

Background
m

Information (cont.) HUMS sn cmmw.noN

Roles and Responsibilities
- Division Reps are the formal channel of communication between the projects and

- HSTX Representative will interface with other Hughes organizations
- Software professionals will inform their division reps of their support requirements

the SWEl (and the focus groups)

* Points of Contact:
- Rick Dorsey - Space and Earth Sciences Div. - rdorsey@ccmail.stx.com
- Larry Hogle - Business Development - lhogle@ccmail.stx.com
- Temp Johnson - Applied Sciences & Tech Div. - tjohnson@ccmail.stx.com
- Bob Kurtz - Systems Technology Div. - kurtz@mustang.nrl.navy.mil
- Cathie Meetre - Computing & Data Mgt. Div. meetre@selsvr.stx.com
- Pete Mumford - Earth Resources Div. - mumf @sioux.soelak.net
- Pradip Sitaram - SEPG - sitaramQselsvr.stx.com

Pradip Sitanrn

Software Process Maturity

See Attachment 11

Pradip Sitaram

Page 2

mailto:rdorsey@ccmail.stx.com
mailto:lhogle@ccmail.stx.com
mailto:tjohnson@ccmail.stx.com
mailto:kurtz@mustang.nrl.navy.mil
mailto:meetre@selsvr.stx.com
mailto:sioux.soelak.net
http://sitaramQselsvr.stx.com

cmzi
Software Process Maturity (cont.) r(uGHEs sn CWWRAMH

Assessment Findings
- Inconsistenthndefined procedures and standards
- Insufficient Training
- Customer environment sometimes not suitable for formal processes
- CM, QA and Testing not integrated
- Software size, cost, and schedule estimation processes undocumented
- Metrics are not collected

Recommendations
- Develop tailorable guidelines
- Institute a training program
- Support staff working at customer environments/sites
- Effectively integrate QA, CM and Testing
- Establish guidelines for software size. cost and schedule estimation
- Identify Metrics and establish a tracking and reportmg mechanism

Pmdip Sltaram

mB
Why was the Guidebook developed HUWES sn CmrnwnoN

Overall understanding of software engineering principles
Provide a common engineering perspective
Integrated approach to software development, management and

Provide software engineering information
support

- Lifecycle Process Models
- Development methodologies
- Checklists
- Tailoring guidelines

Help improve the software engineering processes
Help support proposal activities

Pladip Sitanm

Page 3

In the context of cmi ...

A process must first be manageable before it can be improved in an
orderly and sustained manner. A software process is manageable
when it is:

- Defined and Documented-inputs, outputs, work activities, and

- Measured-Inputs, outputs, work activities. and resources are

- Controlled-A predetermined mechanism exists to maintain a process

- Continuously Improved and Optimized-A predetermined mechanism

responsibilities are outlined and delimited.

measured to provide a basis for control and improvement.

in its desired state.

exists to improve and optimize the process. Software process
management cycles through the following stages:

)) Process definition
’) Measurement and feedback from use
’) Evaluation leading to improvement and optimization

Pndip Sitaram

Gui
mrrrmn

debook Developers HUMS srx cmmwnoN

Writers:
- Members of the SEPG and software developers and managers from all across

the company

Reviewers:
- Over 70 software professionals across HSTX

Editing and Graphics:
- SEPG members
- Publications Resource Center

Pradip Sitaram

Page 4

Guidebook References

Information Systems Division (Hughes Aircraft), Division 48’s

NASA’s Software Engineering Laboratory series documents

DOD documents
Technical Papers
Textbooks

Software Engineering Handbook

Prsdip Sitaram

Intended Audience

Programmers
Analysts
Engineers
Managers
Quality Assurance staff
Configuration Management staff

Distribution note:
This is a proprietary document. restricted to Hughes STX employees

Guidebook Abstract:
Intended for customers and as a marketing document

PradiD Sitaram

Page 5

mB
How the Guidebook can Help

Helps to select the appropriate process model setting the baseline

Helps answer the following:
from which progress can be measured.

- Do you know what your software is doing and what it should do?
- Does your customer know what the software will do?
- Do you know what conditions will cause your software to fail?
- Will successors to your project be able to reproduce your results and continue to

- Are you satisfied with your software development?
develop and modify your software without any significant delay?

Note:
If you did not answer yes to all of these questions, or if you wish you could have
developed your software differently, this guidebook can help you. If you did
answer yes to any of these questions. we could use your expertise to further
upgrade this guidebook.

mB
How the Guidebook can Help (cont.) H U W S S n C ~ m ~ T K) N

* Provides a quick reference guide to software engineering principles. tools,
and techniques. For example:
- Does your customer wish to know why you are using the spiral model rather than

the familiar waterfall model? See the section on lifecycle process models (Section
3).

software design to be tested, documented, and turned over for operational use?
See the section on the software development process (Section 4).

- Do you need to ensure that your end products meet their requirements and that
outputs fulfill the requirements established during the previous development
phase? See the requirements section (Section 4.1).

- Is your boss concerned about a lack of sophistication in methodologies you are
using to manage your software project? See the section on project management
(Section 5).

time? See the CM section (Section 6.1).

QA section (Section 6.2).

- How do you translate a user’s needs into software requirements, then into

- How do you identify configuration items within your system at discrete points in

- How do you ensure that your product meets or exceeds specifications? See the

Pradip Silamm

Page 6

Guidebook Organization
~~~~ ~ ~~ 

Guidebook Outline 
- Background  Information 
- Software  Engineering  Concepts 
- Lifecycle  Process  Models 
- Software  Development  Activity 
- Software  Project  Management  Activity 
- Software  Support  Activity 

Common Features of each  section 
Introductory  information 
General  information 
Process Flow 
Tailoring  guide 
Summary 
References 
Checklists 
Sample  Outlines 

Tailoring the Guidebook 

Use the information as  Guidelines (not gospel) 
Review the  drivers that are  specific to your project: 
- Objective of the  end-product 
- Your  Customer 
- Your  Project  operating  standards 
- Your  staff  and  thew  skill  mix 
- Number  of  people 

Use the Guidebook  as a repository for information and mold whatever  you 
need to best suit your project. 

There is no silver bullet that will solve all the software engineering 
problems 

Prsdip Sitaram 

Page 7 



Software Engineering Concepts 

Definitions 

Software Engineering: 
9 ‘The application of scientific and  engineering  principles to  the: 

- i) orderly  transformation of a  problem  into  a  working  solution,  and, 
- ii) subsequent  maintenance of that  software  throughout  its  useful life.” 

“The practical application of computer science, management, and 
other sciences to analyze, design,  construct,  and maintain software 
and  its associated documentation.” 
“An engineering science that applies  the  concept of analysis, design, 
coding, testing, documentation, and management to  the successful 
completion of a large, custom-built  computer program.” 
“Systematic application of methods, tools, and techniques to achieve 
a stated requirement or objective for  an  efficient software system.” 

Page 8 



m 
Overview - The integrated View HUMS STX ccmwR*TKx( 

The  integrated  view  shows: (see Attachment 1) 
The relationship between  the primary activities within the software 
development process: software project management activity, software 
development activity, and software support activity 
The various phases of the software development lifecycle and the activities 
performed during these phases 
The points where documentation and deliverables are (typically) produced 
throughout the development of the software 
The documentation process, which continues throughout the lifecycle: 
documentation is used to describe the product and serves as a medium of 
communication between the various personnel  involved in the software 
development 
The evolution of documentation that is started in one phase as it changes 
during subsequent phases, until it is available for reference in later stages of 
development 
The points where reviews are typically held to monitor the quality of the 
product being developed 

Pradip Sit lnm 

Propagation of Errors 

see  Attachment 2 

Pndip Sit lnm 

Page 9 



Documentation 

The  specification  and  design of the  system must be  clearly  understood by 
the analysts, designers, management, and  customers. Because  verbal 
descriptions  are  often  too  ambiguous  or  vague  and  are  unavailable  for 
future  reference,  the  specification  and  design  must  be  documented 
using  text  and  diagrams  for  clarity  and  future reference. A well- 
documented  specification  and  design  provide  an  excellent  reference point to 
assess  the extent of development and greatly reduce the  risk of failing into 
the “I am 90 percent finished syndrome. 

During the initial phases of the  lifecycle, the documentation is the 
specification  and it is the design of the  system. If the  documentation  is  bad, 
the design is  bad.  If the  documentation  does  not  exist,  there is no design, 
only people  thinking  and  talking  about a design, which is of some value. but 
not much. 

Documentation (cont...l) 

Pmdlp Sltarsm 

Requirements  Specification-The requirements  specification  is the 
communication  tool  between  the  developer and the  customer. It shows the 
customer that the  developers understand what the  customer wants. The 
software  requirements  specification  is then  used as a management tool. By 
establishing a requirements  baseline,  managers and developers will be able 
to control changes by  estimating  impacts on cost and schedules whenever 
requirements  are modified. 

Testing-Requirements can be  verified and problems  can  be  analyzed by 
anyone, not just the person who developed the code. thereby  reducing the 
burden on the developers. 

Operations-Without  good  documentation, only the  individuals  who 
developed the software  can  effectively  operate  it. With clear  documentation. 
operations  personnel  can operate the  software cheaply and more effectively. 

Pradip Sitaram 

Page 10 



Documentation (conL.2) 

MaintenanceRequests for corrections.  changes,  and enhancements to 
the  software  are  more  easily  addressed when developers  can  refer to 
documentation that describes the software being modified. 

Reusability-Good documentation will allow developers to identify reusable 
software  components. When good  documentation is available,  it  is  possible 
to modify  and enhance the existing  software  more  efficiently  for  use in 
another  system (if it  is not directly reusable).  Without  documentation, 
valuable  time and effort are lost in  trying to determine  what  the software 
does (and how it  does it), often leading to the software being discarded. 

Documentation  provides an ongoing  description of the  system. Document 
deliverables  are  used  by managers to measure progress and to mark the 
transitions  between  lifecycle phases. 

Pndip Sitaram 

Reuse 

Emphasize  the  principles of reuse throughout the software development 
lifecycle. All products generated during the software  development 
lifecycle-requirements, design, code, documentation, and test  plans-have 
the  potential  to  be reused. 
Time  and  resources  are saved in development, testing, and porting. 
Bugs are more  likely to  be detected (and  subsequently  corrected)  because: 
- Systems are  tested each time they are  reused. 
- When a  bug  is detected, all systems reusing a  particular component 

benefit. 
Code  developed with reuse in mind is  far more  maintainable, 
Elimination of redundancies produces smaller,  more  manageable  systems. 
HSTX Software Reuse Repository 
- URL - http://selsvr.stx.com/Hstx/reuse 

Pradip Sitaram 

Page 11 

http://selsvr.stx.com/Hstx/reuse


Reuse (cont ... I )  

These Activities Enable Reuse 
- Domain  Analysis-Identifies  common  requirements  across  the  application 

domain  and  helps  produce  a  model  that  describes  common  functions of a  specific 
application  area.  This  can  later  be  tailored to accommodate  specific  differences. 

- Requirements  Generalization-Covers  those  requirements  that  are  intended to 
describe a “family” of  systems  or  functions. 

- Designing for Reuse-Provides  modularity,  standardized  interfaces,  and 
extensible  and  maintainable  code. 

- Reuse  Libraries-Hold  reusable  source  code  and  associated  requirements, 
designs,  documentations,  and  tests  results.  These  products  may  be  used 
verbatim  or  modified to fit the  purpose. 

- Reuse  Preservation-Ensures  that  changes  and  enhancements  made  during 
the  operational  phase of the  software  adhere to the  same  principles  that  promote 
reuse, i.e.., “quick  fixes:’  may  complicate  future  reuse. 

(see Attachment 3) 

Reuse (cont ... 2) 

The benefits of reuse can be maximized by  planning for reuse early 
in  the development process. For example, to write reusable 
software, keep in mind the following guidelines: 
- Set  in-line documentation standards to  increase understandability of 

- Set naming constraints for  constants,  types, and functions. 
- Set  usage conventions for functions governing argument order and data 

- Encapsulate all data structures. 
- Adhere  to industry standards (ANSI, POSIX, etc.). 
- Strive for  portability (to UNIXes, VMS, DOS) whenever possible). 
- See Section 4.4 for more details. 

code. 

type. 

Pndip Sitllnm 

Page 12 



Lifecycle Process  Models 

Prsdip Sitaram 

mnrrrm 
What  are Lifecycle Process  Models HUMS sn cmrnwnw 

A Lifecycle Process Model defines: 
- the expected sequences of events, 
- development and management activities, 
- reviews, 
- products,  and 
- milestones 

for a project. 

Lifecycle Process Models serve as frameworks and provide 
checklists. They are developed to help,  not to restrict. They need not 
be followed exactly; the important point is to be aware of all the 
available options and to understand why you are deviating from  the 
model (if  you are) it reminds you to make a conscious and informed 
decision. 

Pradip Sitaram 

Page 13 



m 
Why Use Lifecycle Process Models H U M S  sn CCmPORAllON 

Assist in planning  and  provide  a  common  frame  of  reference  and  terminology. 
Define  sequences  of  events  and  phases. 
Identify  the  activities to be  performed. 
Establish  reviews to be  scheduled. 
Define  the  interim  and  end  products  that  need to be  produced. 
Provide  milestones in the  schedule to evaluate  the  plan  and  approach. 
Provide  the  basis  for  producing  the  software  development  plan,  cost  estimates. 
and  schedules. 
Encourage  developers to specify  what  the  system is supposed to do  (define  the 
requirements)  before  building  the  system. 
Encourage  developers to plan  how  components  will  interact  (design)  before 
building  the  system. 
Enable  managers to track  progress  more  accurately  and to uncover  slippages 
early. 
Recommend  that  the  development  process  generate  a  series  of  documents  that 
can  later  be  used to test  and  maintain  the  system. 
Reduce  development  and  maintenance  costs. 
Enable  the  development  of  a  more  structured  and  manageable  system. 

Pradip Sitaram 

Waterfall Model 

See Attachment 4 

Progresses in distinct sequential phases of development 
Has  gone through  many  refinements to  deal  with increasingly 
complex software  development projects 
Most  models are  variations of the Waterfall  model 

Prsdm Sitaram 

Page 14 



Spiral Model 

See Attachment 5 
Activities are  represented  as  a spiralling progression of events  that 

Each cycle  proceeds  through the following 4 quadrants: 
moves outward  from  the  center of the spiral. 

- A: determine  objectives,  alternatives,  and  constraints 
- 5: Evaluate  alternatives:  identify  and  resolve  risks 
- C: Develop  and  verify  the  next  level  product 
- D:  Plan  next  phases 

Once detail design is complete, the spiral model proceeds  thru 
coding and  unit testing, integration testing  and acceptance  testing 
(just like the  Waterfall  model) 
Advantages: 
- encourages  analysis  of  objectives,  alternatives, and rlsks  at  every  step - this 

- allows  for  objectives. to be  re-evaluated  and  refined  based  on  the  latest 
provides  an  alternative  to  one  big  commitment  at  the  start. 

perception of needs 
NOT effective if plans.  objectives, & constraints  cannot  be  changed 

Pndio SlDnm 

Incremental Development Model HUWES S1x CWFWAl7QN 

see  Attachment 6 
Incremental development is the process of building software by initially 
constructing a part of the entire system  and progresswely adding 
functionality in successive builds. 

Because the initial capability is achieved quickly, costs normally associated 
with development prior to the initial release are seemingly reduced: these 
costs  are actually spread across a number of builds. 

By providing operational builds of the  system  more quickly, the possibility 
that the user’s requirements may change during the development of a build 
is  also reduced; changes in requirements may  also be deferred to a later 
build of the software. 

Page 15 



m 
Incremental Dev. Model (conL.1) nuws STX cmmunoH 

~~ ~ 

Note  that when the  incremental  development  model  is used, the  software is 
intentionally constructed  to  (initially)  satisfy  fewer  requirements. However. 
the  software is designed to facilitate the incorporation of new requirements 
in  later builds. 

Advantages of the  Incremental  Development  Approach 
Initial development time is reduced  (because of the  reduced 
functionality). 
Software can be progressively  enhanced  for a longer  period of time 

(because it is designed for growth). 
The operational date is earlier  (although at limited  functionality). 
Mechanisms to addresskope  with  changing requirements  are provided. 
Tradeoffs of functionality  and  performance between versions are 
allowed. 

Prsdip Sitaram 

m 
Incremental Dev. Model (cont ... 2) HUGHES STX CORFUPAllON 

When  using the incremental  development  process model, the software 
must be designed  carefully to easily support additional  functionality 
and growth. The functionality  that is  not  being  provided  in the current  build 
is deferred for a later build, but  the  plans  for adding  this functionality must be 
well thought out and analyzed. 

0 This approach is different from the evolutionary  prototype model because 
the  implication  is that in the incremental  development  model the developers 
understand most of the  requirements  but  are  choosing to provide the 
functionality  in subsets of increasing  capability. 

Pradip Sitaram 

Page 16 



Prototyping 

Prototyping  is  the technique of constructing a partial implementation of a 
system so that customers, users, or developers can learn more about a 
problem or a solution to that problem. The key word  here is partial; if you 
were implementing the complete system, it would no longer be a prototype, 
it would  be the system. 

Prototypes can be developed in the requirements, design, or coding phases 
of the software development lifecycle. 

Prototyping is not a euphemism for hacking, nor is prototyping an excuse to 
develop undocumented and unstructured code. Remember, the primary 
objective in developing a prototype is to learn: a completely undocumented, 
unstructured. and  sloppy prototype will outweigh its usefulness with time 
wasted by developers attempting to figure out how it was constructed. 

Pradip Sllaanrn 

Prototyping  (cont.) 

Some Reasons To Develop a Prototype: 
- Demonstrate a capability either internally or to an external customer. 
- Assess a design approach or  an algorithm for correctness or efficiency. 
- Evaluate the ability of a software development system to support 

efficient software production or to support a given number of 
programmers. 

- Provide a measurement vehicle when estimating user response times, 
recovery times, transmission times, Code expansion factors, etc. 

- Validate requirements by demonstrating that they can be implemented 
and exploring possible error conditions that requirements must cover. 

- Clarify ambiguous requirements. 
- Provide a vehicle for soliciting end-user input, primarily on the Hurnan- 

- Form a basis for the full implementation effort. 
Machine Interface (HMI). 

- Serve as  an early, concrete milestone in the development schedule. 
- Demonstrate feasibility of new and evolving technology. 

Pmdip Sltamrn 

Page 17 



Plan ning for Prototypes 

Contents of a  Prototyping Plan 
- The  purpose  and  use of the  prototype 
- Brief  description of the  work to be done  and  the  products to be  generated 
- Technical  approach 
- Completion  criteria 
- Evaluation  criteria  and  methods 
- Resources  required:  effort,  size,  staff,  and  hardware  and  software  estimates 
- Schedule 

Beware: A prototyping effort could  continue  indefinitely if the 
completion  criteria and evaluation guidelines are  not established. 

Pradip Sibnrn 

rn 
Throwaway Prototyping W M S  S T *  CORWRPlnON 

See  Attachment 7 

A throwaway prototype is constructed to  learn more about the  problem or its 
solution. This prototype is discarded  once it has  been  used  and  the 
requisite  knowledge  has  been  gained. 

Design  and code should be understandable to its developers for the 
prototype to fully serve its purpose. The throwaway prototype should be 
delivered quickly - there are no rigorous lifecycle phases  to be followed. The 
advantage lies in quickly gaining additional knowledge about a certain 
aspect of the system so that the  normal development lifecycle of the system 
can proceed accordingly. 

A throwaway prototype can be developed during the requirements, design, 
and coding phases of any of the lifecycle process models (waterfall, spiral, 
incremental build, evolutionary prototyping, etc.). 

Pmdip Sitsmrn 

Page 18 



Throwaway 
rn 

Prototyping  (cont ... 1 ) H U M S  STX C O R F W A M N  

During Requirements Analysis, a Prototype May Be Developed To: 
- Determine  the  feasibility of a  requirement. 
- Validate  that  a  particular  function  is  really  necessary. 
- Uncover  missing  requirements. 
- Clarify  an  ambiguous  requirement. 
- Determtne  the  validity of the  user  interface. 
- Write  a  preliminary SRS. 
- Implement  a  prototype  based  on  a  preliminary SRS. 
- Achieve  user  experlence  with  the  prototype. 

9 Beware of a common scenario that occurs when a throwaway prototype is 
delivered: the customers say they love the prototype  and want to make it an 
operational system- the infamous operational prototype. 

To prevent the prototype from being used as the actual system: 
- Prototype  the  system  in  pieces (do not build an  end-to-end  prototype). 
- Simulate  the  system's  interaction  with  data. 

Pradlp S ibnm 

Evolutionary Prototyping 

See Attachment 8 

In this model, the prototype is constructed to learn  more about the problem 
or its solution. Once the prototype has been  used and  the requisite 
knowledge has been gained, the prototype is then adapted to satisfy the 
now better understood requirements. 

Evolutionary prototypes cannot be built in a sloppy manner. Because the 
evolutionary prototype will finally evolve into  the final product, it must 
demonstrate all the quality, maintainability, and reliability associated with the 
final product. Remember,lt is impossible to retrofit quality, 
maintainability, and reliability. 

Page 19 



Evol u 
m 

tionary Prototyping (cont.) HUMS STY cmmunm 

Approaches: 
- build only the parts of  the system that  are  well  understood,  leaving the 

others to later generations of the  prototype 
- lowering the importance of performance  (to paraphrase Dijkstra, it is 

easier to make a working program  faster than  make a fast program 
work). 

If necessary, you could  build  a throwaway prototype  during an evolutionary 
prototyping process, especially if it clarifies your understanding of the issues 
you are addressing with the evolutionary  prototype. 

Throwaway vs. Evolutionary rn 
Prototyping 

HUWS sn cmmwnm 

Throwaway Evolutionav 
Prototyp Prototype 

UltimateGoalr 
Learn fmm 11 . and 
evolve 11 

Pradip Sitaram 

Page 20 



Comparison of 
Lifecycle Process Models 

Pradip Sihram 

Software Development  Activities 

Pradip Sihram 

Page 21 



An Integrated View of CEm 
Software Development 

W M S  Xt CORFQWTU)N 

See Attachment 1 

Pradlp Sitanm 

Requirements Analysis 

Page 22 



... a reference check 

See Attachment 9 

Requirements - Definitions n 

A complete. concise description of the external  behavior of the software 
system. including its interfaces to its environment, other software systems. 
communications ports, hardware, and users. 

This description is recorded in a document called  the Software 
Requirements Specification (SRS). 

To analyze and specify the software requirements. software developers 
must first analyze the current system  (automated or nonautomated) and the 
problem(s) being addressed. 

The information required to perform this analysis is obtained from: 
- the Statement of Work (SOW) 
- operations concepts documents 
- systems requirements 
- interviews with users and customers 

Pmdip Sitaram 

Page 23 



Process flow in the m 
Requirements phase 

HUQIES sn C O R P W A M N  

See Attachment 10 

Primary Functions of an SRS 

Pradip Sitanrn 

Facilitates  communication  among  customers, users, analysts, & designers. 

Establishes the basis  for t h e  contractual  agreement  and  provides  a  standard 
against  which  compliance is measured. 

* Clearly  defines  the  required  functionality of the software:  the  software must 
provide  all  required  functions  (functions  that are not required should  not  be 
specified). 

Reduces  development costs-only the  specified  requirements  are  designed 
for  and built. Reduces  the  possibility of  rework by raising issues early in the 
development  lifecycle. 

Page 24 



m 
Primary Functions of an SRS (cont.) tlUWSSnCWmRIMN 

Provides  the  relative  necessity  (essential,  desired,  optional, TBD) and  the 
relative  volatility  (confirmed,  changing,  unconfirmed, TBD) of t h e  specified 
requirements. 

Provides  basis  for  verifying  compliance:  supports  system  testing  activities. 

Provides  the  foundation  and  helps  control  the  evolution of the  system. 

Facilitates  transfer  and  reuse.  The SRS makes it easier to transfer  the 
knowledge  about  a  software  product to new  users  and  machines.  Potential 
Users  can  review  the SRS to determine  how  well  the  system  meets  their 
needs  and  also  gauge the software for compliance to the  specified 
requirements. 

What Should be in an SRS 

Pradip Sitaram 

HUMS STX cmmunoN 

A complete,  concise  description of the  entire  external  interface of the 
software  system with its environment.  including  other  software, 
communication ports, hardware.  and  human  users. This includes  two  types 
of requirements: 
- Behavioral  requirements  define  what  the  software  system  does.  All  the  functions 

to be  performed. all the  inputs  and  outputs to and  from  the  software  system,  and 
information  concernmg  how  the  Inputs  and  outputs WIII interrelate  are  described. 

- Nonbehavioral  requirements  define  the  attributes  of  the  software  system  as it 
performs its job.  They  include  a  complete  description  of  the  software  system's 
required  level  of  efficiency,  reliability,  security,  malntainability,  portability,  vlsibility, 
capacity,  and  standards  compliance. 

Software  requirements  should not be  confused with user  needs. It is the 
software  developer's  responsibility to interpret the user  needs  (customers 
often  refer to these  needs as requirements)  and  translate them into the SRS. 

Pradip Sitaram 

Page 25 



What 
mm 

Should NOT be in an SRS HUMS STX ummR*nm 

Project  requirements:  staffing,  schedules. costs, milestones,  activities, 
phases, and  reporting  procedures  (these belong  in the  software  project 
management plan) 

* Designs  (these belong  in  the design  documents) 

* Product assurance plans: CM plans,  Verification  and  Validation (V&V) plans, 
test plans, and QA plans 

Pradip Sitaram 

Attributes of a good SRS 

Correct-Every  requirement  specified  represents  something  that  is  required 
of the  system  to be built. 

Unambiguous-Every requirement Specified has only one  interpretation. 

Complete-Everything the  software  is  supposed to do is  included 

Verifiabi-There is a  cost-effective  method to check the  final  software 
system to ensure that every requirement  specified  has been met (testable). 

Consistent-1) No two parts of any requirement  should  have  conflicting 
terms, 2) no  two requirements  should  specify the system to exhibit 
conflicting  characteristics,  and 3) no two requirements  should  require the 
system to  respond to conflicting  timing  patterns. 

Pradlp Sitaram 

Page 26 



rn 
Attributes of a good SRS (cont.) qUWES STY CORPMUTON 

Understandable  by  Noncomputer  Specialists-It should  serve as a 
communication tool between customers and developers. 

Modifiable-Requirements will change; the  easier  these changes are to 
make  the  better. 

Traceable-Origin of each requirement and its dependents  is  easily 
identified. 

Annotated-Guidance for development is  provided to show the relative 
necessity and relative  volatility of the requirements. 

U s a b l e M o s t  importantly, the requirements should  be produced in a 
manner that allows them to be used  and to be of help to the developers. 

Feasible-Can  this system be  built? 

Prmdlp Sitaram 

Advantages 
~ ~~ ~~~~~~ 

Myth: “...the requirements will change anyway, so why bother documenting 
the rn....” 

Fact: In the  early  phases of  the lifecycle,  the (documented) software 
requirements  specifications are the requirements. If they  haven’t been 
documented,  there  are no requirements! Requirements  must  be 
documented from the very beginning for the  very  reason  that they do 
change:  this is the best way to control and  manage  changing requirements. 
The fact is that requirements will change and  evolve.  The best that we can 
do as  developers is to manage and control  their  evolution. 

Page 27 



Advantages (cont.) 

Faulty  (or  unspecified)  requirements  will  lead  to  errors in the system. Errors 
can be  costly to the project, especially  because  errors  often  remain latent 
and are  undetected  until  well after the  stage in which  they were made. The 
later in the development lifecycle  a  software  error is detected, the more 
expensive  it will be to repair. Typically,  errors  made in requirements 
specifications are because of incorrect facts, omissions.  inconsistencies, 
and ambiguities.  Using formal analysis  and  specification  methods  correctly 
can reduce  the incidence of errors  in  the  requirements phase. 

Pmdip Sltanrn 

Formal Techniques 

Data Flow Diagrams (DFDs) (see  Section 4.1.9.3) 
Entity  Relationship Diagrams (ERDs) (see Section 4.1.9.3) 
Finite  State Machines (FSMs) (see  Section 4.1.9.3) 
Statecharts  (see Section 4.1.9.3) ' 
Data Dictionaries 
Decision  Tables  and Decision Trees 
Object-Oriented Diagrams (OODs) 
Program  Design Language (PDL) 
Requirements Engineering Validation System 
Requirements Language Processor 
Specification  and Description Language 
PAlSLey 
Petri  Nets 

Pndip Sitaram 

Page 28 



ma 
Tailoring to a small project W M S  s i x  CCmPORIMH 

Each project is unique. Tailoring the information  provided  in  this  section  is 
essential in defining  and  implementing  the requirements analysis  function to 
a specific project. 

Regardless of project  size,  the  requirements  analysis  function  needs  to 
be performed. Only the  level of detail and formality of the  process  and 
products vary among  projects. 

Some of the factors to be considered are: 
- Time 
- Resources 
- Complexity 
- Contractual  commitments 
- Intended use of the  product 

Pradio Sitsnm 

Tailoring (cont ... I )  W M S  s i x  coRponATy)N 

For small  projects  where  time  and resources are very limited, it is impractical 
to attempt to provide a complete  suite of documentation and  evaluate the 
SRS at a formal review. However, it is  essential to complete at least  the 
following, in writing, before the software is designed: 
- Briefly  describe  the  objective of the project and include a few statements 

describing the external  behavior of the software: this will help  you to 
control the scope of development. 

limitations.  security,  availability of third-party  software). 
- List and briefly  describe any constraints (standards, hardware 

- List  and briefly describe external  interfaces for (all applicable): 
)) Other software 
’) User 
)) Operators 
’) Communications 

- Identify, list, and  describe the primary functional requirements being 
addressed by the system. 

Prsdip Sitaram 

Page 29 



Tailoring  (cont ... 2) A U W S  STX CORFQWWIN 

- Identify and  describe the  data  flows  into and out of the  system at the 
context  level and associate  the primary data flows to  the primary 
functions. The details provided regarding  data  flows can be  extended 
according  to  the  resources  available  and  complexity of the problem 
being  described. 

- If applicable,  identify and describe the primary operating  states of the 
system and  the  events  that  the system responds to. Again, the  details 
regarding  the  description of the states and the events can  be extended 
according  to  the  complexity of the problem being  addressed. 

PradiD Slbnrn 

Tailoring  (cont ... 3) 

- If a user interface  is  required, determine whether 
~3 it is  hierarchical or menubar-driven and whether  it  has pop-up 

)B Describe  events  when windows are displayed 
)) describe when  windows are displayed  concurrently 
)) Describe what the windows look like 
)) what events they respond to 
’) what they do in  response  to these events 

windows. 

- Note: It is perfectly  acceptable  to design the user interface  during the 
requirements  phase,  because  you are describing what the  interface 
looks  and  feels  like (not how the interface  accomplishes its functions). 
Remember, the  user  interface is the external interface of the  software 

Pradip Sibrarn 

Page 30 



Tailoring (cont ... 4) 

- Ensure that the issues  you  are  specifying meet the attributes 

- Briefly describe your plans  (outline your test  plan) to test  the  software 
after it is built to confirm that the  requirements  have  been satisfied. Do 
not specify requirements for which  you  cannot prescribe a test to 
verify compliance. 

- Remember that the objective  is  to  specify What the system will do. It is 
essential  to  obtain the customer's approval on what you have written this 
will serve as a common  point  of  reference during  future development 
activities. The formal SSR can  be  replaced  by an informal discussion 
about the requirements, culminating  in agreement between  the 
developers and the customer  on the requirements that will be addressed 
during the development process. 

Checklists 

Are Requirements complete ? 
Are Requirements consistent ? 
Is implementation feasible ? 
Are Requirements testable ? 
Are Requirements understandable ? 
SRS checklist 
IRS checklist 
SSR checklist 

Page 31 



Preliminary Design 

Primary Functions of a  Preliminary  Design 
General Methodology for Developing  a  Preliminary  Design 
Preliminary Design Phase  Process  Flow 

* Items  to be addressedldescribed  for  Each  Software  Subsystem  that  is 

Selecting  a  Design  Methodology 
0 Organizing  a Software Design  Document 

Reviews 
0 Tailoring to a  Small  Project 

* Sample Tables of Contents 

identified 

Checklists 

- Detailed  Design  Document  (Reference:  NASA-DID-P4(PO) 
- Software  Subsystem  Specification  (Reference:  DOD-STD-1703) 
- interface  Control  Document  (Reference:  DOD-STD-1703) 
- Software  Development  File  (SDF) 

Pradlp Sibram 

Detailed Design 

General Methodology for Developing the Detailed  Design 
- For Each  Subsystem  of  the  Software  System 
- For  Each  Database  of  the  Software  System  (if  any) 
- For  Each  Software  Subsystem-to-Software  Subsystem  Interface  Specified in the 

- For  Each  Module  Identified  as  Part of a  Software  Subsystem 
I RS 

* Detailed Design Phase Process  Flow 
Reviews 
Summary of the Detailed  Design  phase 
Tailoring  to a Small Project 
Suggested  Reference  Material 
Checklists 

Pmdip Sibram 

Page 32 



Coding and Unit Testing 

General  Methodology  for  Performing  Coding  and  Unit  Testing 
General  Guidelines  for  Developing  Code 
- Guidelines for Comments 
- General  Guidelines 
- In-Line  Comments 

Prologues 
- Function  Prologues 
- File  Prologues 
- Module  Prologues 

Epilogues 
Banners 
Naming  Conventions 
Coding  Style 
General  Philosophy 
- Correctness 
- Understandability 
- Modifiability 
- Reusabtlity 
- Elegance 

Coding and Unit Testing (cont.) 

Pradip Sibram 

Code  Structure 
Code  Formatting 
Files 
Functions 
Constants 
Global Variables 
Organizing  the  Unit  Test  Documentation 
Reviews 
Summary  of  the  Code  and  Unit  Test  Phase 
Tailoring to a  Small  Project 
Reference  Material 
Coding  Guidelines  for  C 
Comments 
Naming  Conventions 

Coding  Style 
Checklists 

- General,  Constants,  Globals.  Types,  Functions,  Macros 

PradB Sibram 

Page 33 



Integration and Testing 

General  Methodology for Subsystem  Integration  and  Testing 
Important  Considerations for Subsystem  Integration 
Reviews 
Summary of the  Integrating  and  Testing  phase 
Tailoring to a  Small Project 
Reference  Material 
Checklists 
Sample  Tables of Contents for Test Plans 

System Testing 

* General  Methodology for Performing  a Systems Test 
Reviews 
Summary of the Systems Testing  phase 
Tailoring to a  Small Project 

0 Reference  Material 
0 Checklists 

Page 34 



Acceptance Testing 

General Methodology for System Acceptance Testing 
Tailoring to a Small Project 
Reference Material 
Checklists 

Pndip Silarsm 

Operations and Maintenance H U M S  STY CORKMATION 

Four Categories of Software Maintenance 
- Corrective  Maintenance 
- Adaptive  Maintenance 
- Perfective  Maintenance 
- Performance  Maintenance 

General Methodology for Operations and Maintenance 
Tailoring to a Small Project 
Reference Material 
Checklists 
Sample Tables of Contents 

P n d i  S iPnm 

Page 35 



Software Project 
Management Activities 

Software Project Management Planning (5.1) 
Software Development Plarining (5.2) 
Software Cost Estimating (5.3) 
Software Metrics (5.4) 
Scheduling and Tracking (5.5) 
Risk Management (5.6) 

Do’s for Project Success (5.7) 
Don’ts for Project Success (5.8) 
Danger Signals and Corrective Measures (5.9) 

Project Do’s ... 

Pradip Sitaram 

. 
* . . . 

a 

Use a small senior staff for the early  lifecycle  phases. 
Develop  and adhere to an  SDP. 
Write down the SRS. 
Define specific intermediate and  end  products. 
Examine alternative approaches. 
Perform risk analysis. 
Conduct formal and  informal reviews with  customers  and users. 
Use a defined  testing process. 
Use a central repository. 
Keep a detailed list of TBD items. 
Update  system size, required effort,  cost,  and  schedule estimates. 
Allocate  sufficient time for testing  and  integration. 
Experiment. 

Pradlp Sllararn 

Page 36 



Project Don’ts ... 

e . 
e 

e . . 

Don’t overstaff. 
Don’t allow an undisciplined development approach. 
Don’t delegate technical details to team members. 
Don’t assume that a rigid set of project-specific standards and guidelines 
ensures success. 
Don’t assume that a large set of documentation ensures success. 
Don’t deviate from the  approved design. 
Don’t assume that relaxing project-specific standards and guidelines will 
reduce costs. 
Don’t assume that the  pace will increase later in the project. 
Don’t assume that schedule slippage can be absorbed in later phases. 
Don’t assume that introducing new tools will reduce the schedule. 
Don’t assume that everything will fit together smoothly at the end. 

Danger Signals 

Prsdlp Sitaram 

Scheduled  capabilities  are  delayed to a later  buildhelease. 
Coding  is  started too early  (staff is too large too early). 
Numerous  changes  are  made to the initial SDP. 
Guidelines  or  planned  procedures  are  de-emphasized or deleted. 
Sudden  changes  in  staffing  (magnitude)  are  suggested  and/or  made. 
Excessive  (irrelevant)  documentation  and  papenvork  is  being  prepared. 
There  is a continual  increase  in  the  number of TBD  items  and ECRs. 
A decrease  in  estimated  effort for system  testing  is  suggested  and/or  made. 
There is reliance  on  other  sources  for  “soon-to-be-available”  software. 

Pradip Sitaram 

Page 37 



Corrective Measures 

Stop  current  activities  and  review  the  problem  activity. 
Decrease  staff to a manageable  level. 
Assign a senior  staff  member to assist  junior  personnel. 
Increase  and  tighten  management  procedures. 

* Increase  the  number of intermediate  deliverables. 
Decrease  the  scope  of  work  and  define a manageable  thread  of  the  system. 
Audit  the  project  with  independent  personnel  and  act  on  their  findings. 

Software Support Activities (1) mm 
Configuration Management 

HUGW sn CcumnAnoN 

. 
e . 

e 

e 

e 

. . 
0 

b . 

Software Configuration Management (6.1) 
Main  Functions of SCM 
Configuration Identification 
Functional, Allocated, and Product Baselines 
Configuration Control 
Build Control 
Configuration Status Accounting 
Configuration Auditing 
Phase-Independent SCM 
Continuous Identification of Configuration Items 
Software Development Library 
Configuration Control  Board 
Phase-Dependent SCM 
SCM Tools 
Tailoring to a Small Project 
Sample Tables of Contents PradiD Sitanm 

Page 38 



Software Support Activities (2) 
Quality Assurance 

Software Quality Assurance (6.2) 
The specific goals of QA 
Evaluation of: 
- Corrective  Action  Process 
- Software  Plans 
- Software  Management  Activities 
- Software  Configuration  Management  Activlties 
- Software  Engineering  Activities 
- Software  Testing  and  Qualification  Activlties 
- Software  Development  Library 
- Software  Storage,  Handling  and  Delivery 
- Software  Media  and  Docurnentatlon  Distrlbutlon 
- Subcontract  Management 
- Software  Docurnentatlon 
- Software 

Phase-Dependent Quality Evaluations 
Tailoring to a Small Project 
Sample Tables of Contents 

Pradip Smram 

Review 

Background  and historical information 
Organizational entities 
Terminology 
High-level overview of the Guidebook 
First step in Software  Engineering  Training 

Overview of the  other  phases of development 
Overview of Software  Project Management activities 
Overview of Software  Support activities 

- Requirements  Engineering 

Pmdip Sitaram 

Page 39 



Feedback 

Presentation  evaluation . Comments  on  the Guidebook 

Page 40 



Introduction 
to the 

Software  Engineering 
Guidebook 

Attachments 

Pradip Sitaram 
Hughes STX Corporation 

September 14,1995 

Hughes STX Proprietary HUGHES STX CORPORATION 



I I I  

1 

HUGHES STX CORPORATION 



‘ 2  

I 

REQUIREMENTS 
SPECIFICATION Erroneous 

Specification  Specification 

DESIGN 

IMPLEMENTATION 1 1 

Correct . 1 Programs Based i Programs Based I Proarams on Erroneous on Erroneous 

TESTING 
Correct 1 Functions 

1 Uncorrectable 
Errors 1 Hidden  Errors I 

HUGHES STX CORPORATION 



3 

1 Generalition 
of Require 
ments  and 

P 
f 
E,  Designing for Reuse 
c 

Extracting of 
Candidates  for 
Reuse Library 

Reuse  Verification 
(subsystem and  module level) (writing to library units) 

e Modification of Reusable Modules 

- 
Figure 251. Reuae Activities in the Lifecydes 

HUGHES STX CORPORATION 



' 4  

SSR: 
PDR: 
COR: 
onr: 
TRR: 
m 
PCA: 
FQR: 

Software Speafimon Review 
Preliminary  Design  Review 
Critical Design Review 
Code Walkthrough 
Test Readiness Review 
Functional Conftgufation Audit 
Physical Configuration Audit 
F O ~ I  aua lmn ROW 

Figure 322-1. The Waterfall Model-Phases, Reviews, and Major Products 

HUGHES STX CORPORATION 



5 

CUMULATIVE COST 

Figure 3.3-1. Spiral Model of the Software Process 

HUGHES STX CORPORATION 



6 

Software Prelimtnary 
Requtremems Design 

R e v i e w  Revtew 

Figure 3.4-1. Incremental Development Modei 

HUGHES STX CORPORATION 



7 

Figure 3.5.22-1. 
Throwaway Rototyping During  Requirements Analysis, Preliminary Design, and Detailed Design 

HUGHES STX CORPORATION 



. 8  

.. 
I 

Figure 353-1, The Evolutionary Prototype Model 

HUGHES STX CORPORATION 



9 
I , 

\ 8 
\ \ 

\ \ 

\ \ 

\ 
8 

8 
\ 8 

\ 8 

\ 8 

\ 
\ 

\ 
8 

\ 
\ 

8 

\ \ 

\ 
8 

\ 
\ 

\ 

\ 

\ 

\ 
\ 

\ 

\ 
\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

e 
c 

8 
8 . 

L 

\ 

\ 

\ 

\ 



10 

Figure 4.1.1-1. Requirements Phase Process Flow 

HUGHES STX CORPORATION 



HUGHES STX CORPORATION 





Software Engineering Guidebook ii 

The Hughes STX Software  Engineering Guidebook Development Team: 

Pradip Sitaram 
Guidebook  Development Team  Lead 
Tel # (301) 441-4184 
email:  sitaram@selsvr.stx.com 

Temp Johnson 
Software  Excellence  Initiative  (SWEI) Chauperson 
Tel # (301) 441-4171 
email:  tjohnson@ccmail.stx.com 

Lee Bodden 
Dave Niver 
Sherry Paquin 
Carl Solomon 
Mark  Solomon 

Other  contributing writers: Babu Balakrishna,  Erik Dorfman, AI Dwyer, Bob Harberts, 
Jerry Klein,  Teresa Larson, Len Olsen, Chris  Lymes,  and Ed Wilson. 

The Publications Resource  Center: 

Karen  Poxon, Editor 
Dannette Lawrence,  Format and Layout 
John Hazen, Graphics 
Ron  Bretemps, Reprographics 

And, all the  other members of the Publications Resource Center who assisted with  the 
development of this guidebook. 

Version 1 
Software Engineering Guidebook 

Copyright 0 September, 1994 Hughes STX 
All Rights  Reserved 

Printed in U.S.A 

Version 1 Hughes STX Proprietary 

mailto:sitaram@selsvr.stx.com
mailto:tjohnson@ccmail.stx.com


Software  Engineering  Guidebook ACKNOWLEDGEMENT iii 

Acknowledgments 
This Software  Engineering  Guidebook is the result of the dedicated effort and support of 
many individuals throughout  Hughes STX Corporation (HSTX).  It originated out of a grass- 
roots  effort  combined with a corporate vision  and desire to better understand  and improve the 
processes and products of our software engineering  efforts.  With  the continued support of 
HSTX management, current and past members of the HSTX Software  Engineering  Process 
Group (SEPG), and other HSTX personnel, this guidebook  will continue to  evolve and 
improve our software engineering process. 

The SEPG would  like to thank Ashok  Kaveeshwar,  Naren  Bewtra,  Dick  Bishop,  Ron  Estes, Kit 
Harvel, Rick Payne, Mirco Snidero, and Dick  '@he for their invaluable support in providing 
resources (personnel, time, and  hardware), all of which made the development of this 
guidebook  possible. 

This version was enhanced and improved through the reviews, and valuable comments  from 
the numerous software developers, managers, and software support personnel across HSTX. 

This version  also  benefited  greatly  from the information in the Hughes,  Division 48 (now 
HITC) Software  Engineering  Handbook. Other major  sources of information included NASA 
GSFC's Software  Engineering  Laboratory documents, ANSVIEEE documents and  standards, 
and DoD documents and  standards. 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook PREFACE V 

Preface 
As part of the HSTX Software Excellence Initiative (SWEI), the Software Engineering Process 
Group (SEPG) is chartered to train and guide software developers in software engineering 
principles. The  objectives of the SWEI closely correspond with those of our implementation of 
continuous measurable improvement (crni). The software engineering process is  one of three 
factors affecting software quality; the other two are people and technology.  In this guidebook, 
we will emphasize the process; our premise is that the quality of a software system depends 
upon the quality of the process used to develop the software. By improving our software 
development process, we will improve the quality of our software. 

crni suggests that  the quality of our software can be measured in  terms of how  well it helps our 
clients accomplish their missions. Our success depends  on our ability to help our customers 
understand how they will benefit  from the latest technology in software development. Our 
challenge, then, is to harness our knowledge of software development methodologies and 
techniques and mold  them  to suit  our customers’ environments. The  key  to  success  lies in our 
ability to be creative and flexible while applying tried and proven methodologies to  meet our 
customers’ needs. Quality software products  are best attained  through proven and repeatable 
processes. This guidebook is intended to provide a  framework  from  which software 
developers can meet this challenge. 

The purpose of the HSTX Software Engineering Guidebook is to enhance the quality of our 
software systems and increase the productivity of those individuals responsible for designing, 
developing, maintaining, and managing these systems. The SEPG has developed this 
guidebook  to: 

Foster an overall, company-wide understanding of software engineering principles. 

Present proven software development processes in a software engineering reference that 
can serve  as an initial foundation for HSTX software engineering training and in  support 
of proposal activities. 

Foster  a  common engineering perspective with which  to plan, develop, implement, 
maintain, manage,  review, and improve HSTX software processes. 

Provide an integrated approach  to software engineering activities encompassing software 
development  and maintenance, software support (i.e., Quality Assurance [QA] and 
Configuration Management [CM]), and software management. 

Provide software engineering information (offering lifecycle models, development 
methodologies, checklists, and tailoring guidelines) in a  concise, easy-to-update format 
that is practical and tailorable to every HSTX software project or task. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook TABLE OF CONTENIs vii 

Table of Contents 

Section Page 

.............................................................. 1 Introduction 1.1 
1.1 Purpose .......................................................... 1-1 
1.2 Intended Audience ................................................. 1-2 
1.3 How This Guidebook  Can  Help You ................................. 1-2 
1.4 Tailoring This Guidebook ........................................... 1-3 

2 Introduction to Software Engineering ........................................ 2-1 
2.1 Definitions ........................................................ 2-1 
2.2 Introduction ....................................................... 2-1 
2.3 The Propagation of Errors ........................................... 2-5 
2.4 Documentation .................................................... 2-6 
2.5 Reusability ........................................................ 2-8 
2.6 Cited References .................................................. 2-10 

3 Lifecycle Process Models ................................................... 3.1 
3.1 Introduction ....................................................... 3.1 
3.2 Waterfall Model ................................................... 3.2 
3.3 Spiral Model ...................................................... 3.4 
3.4 Incremental Development  Model .................................... 3.6 
3.5 Prototyping and Prototyping Models ................................. 3.8 
3.6 Selecting  a  Model ................................................. 3.13 
3.7 Cited References .................................................. 3.15 

4 Software Development  Activities ............................................ 41 
4.1 Requirements Analysis Phase ..................................... .4. 1.1 
4.2 Preliminary Design Phase ........................................ .4. 2-1 
4.3 Detailed  Design  Phase ........................................... .4. 3.1 
4.4 Coding and Unit Test Phase ....................................... 4.41 
4.5 Integration and Testing Phase .................................... .4. 5.1 
4.6 Systems Testing Phase ........................................... .4. 6.1 
4.7  Acceptance Testing Phase ........................................ .4. 7.1 
4.8 Operations and Maintenance Phase ............................... .4. 8.1 

5 Software Project  Management  Activities ..................................... 5.1 
5.1 Software Project  Management Planning ............................ .5. 1-1 
5.2 Software Development Planning .................................. .5. 2.1 
5.3 Software Cost Estimation ........................................ .5. 3-1 
5.4 Software Metrics ................................................. 5.41 
5.5 Scheduling and Tracking ......................................... .5. 5-1 
5.6  Risk Management ............................................... .5. 6.1 
5.7  Do’s for  Project  Success .......................................... .5. 7-1 
5.8  Don’ts  for  Project  Success ........................................ .5. 8.1 
5.9 Danger Signals and Corrective Measures ........................... .5. 9-1 

6.1 Software Configuration Management .............................. .6. 1.1 
6.2 Software Quality Assurance ...................................... .6. 2-1 

................................................ 6 Software Support Activities 6-1 

Version 1 Hughes STX Proprietary 



viii TABLE OF CONTENIS Software Engineering Guidebook 

Table of Contents  (Continued) 

Section Page 

Acronyms ...................................................................... A-1 

Glossary ....................................................................... G-1 

Comments and Feedback. ........................................................ C-1 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook TABLE OF CONTENTS iX 

List of Illustrations 

Figure 

2.2-1 
2.2-2 
2.3-1 
2.5-1 
3.2-1 
3.3-1 
3.41 
3.5.2-1 

3.5.3-1 
4.1.1-1 
4.2.1-1 
4.3.1-1 
4.8.1-1 

5.3.1-1 
5.3.1-2 
5.3.1-3 
5.3.3-1 
5.5.41 
5.5.5-1 
5.5.8-1 
5.6.3.2-1 
6.1.2.2-1 

Page 

Software Development  Process-An Integrated View ....................... 2.2 
Software Component Terminology ...................................... 2.6 
The Cumulative Effects of Errors, 0 IEEE  1983 ............................ 2.7 
Reuse Activities in the Lifecycles ........................................ 2.9 
The Waterfall Model-Phases,  Reviews. and Major Products ............... 3.2 
Spiral Model of the Software Process .................................... 3-5 
Incremental Development  Model ....................................... 3-7 
The  Throwaway Prototype During Requirements Analysis, Preliminary 
Design, and Detailed Design .......................................... 3.11 
The Evolutionary Prototype Model ..................................... 3.12 
Requirements Phase Process Flow ................................... .4. 1.2 
Preliminary Design  Phase  Process  Flow ............................... .4. 2.2 
Detailed  Design Process Flow ....................................... .4. 3-2 
The  change process may result in repeating many of the activities 
performed during initial development of the software; i.e., planning, 
requirements analysis, and system acceptance) . Maintenance  staff should 
refer  to the  prior sections for details and tailor these to their 
maintenance activities .............................................. .4. 8.2 
Software Cost Estimation Process (Page 1 of 2) ......................... .5. 3-2 
Software Cost Estimation Process (Page 2 of 2) ......................... .5. 3.3 
Software Size Estimation Process  Wideband Delphi Method ............. .5. 3.4 
Software Size Estimation Iteration Form  (Whiteband Delphi Method) ..... .5. 3.7 
Multiple Build Software Development Schedule ....................... .5. 5-4 
Software Development Schedule (Single Build) ........................ .5. 5-6 
Example Graphical Profile .......................................... .5. 5.8 
Risk Management Steps ............................................ .5. 6-4 
Configuration Control, Status Accounting, and Auditing ................ -6.1-4 

Version 1 Hughes STX Proprietary 



x TABLE OF CONTENTS Software  Engineering  Guidebook 

List of Tables 

Table 

3.5.41 
3.5.5-1 
3.6-1 
5.4.2.3-1 
5.6.2-1 
5.6.3.2-1 

5.6.3.2.3-1 
6.1.2.6.2-1 

Page 

Throwaway  Prototype vs . Evolutionary  Prototype ....................... 3.12 
Comparison of Prototypes ............................................ 3.13 
A  Comparison of Lifecycle  Process  Models .............................. 3.14 
Table  for  Determining  the  Assembly-Equivalent  Source  Size ............. 5.46 
A Prioritized  Top-Ten List of Software  Risk  Items ...................... -5.6-2 

Techniques ........................................................ 5.6-5 
Risk  Control  Methods ............................................... 5.6-7 
SCM Activities by Phase ............................................ .6 .  1-7 

Top-Ten  List  of  Software  Risk  Items  With  Risk  Management 

Version 1 Hughes STX Proprietary 



Section 1 

Introduction 

Version 1 Software Engineering  Guidebook Hughes STX Proprietary 



S o h e  Engineering Guidebook I ~ O D U C T I O N  1 -iii 

Contents 

1.1 Purpose .............................................................................................................................. 1 

1.2 Intended  Audience ........................................................................................................... 2 

1.3 How This Guidebook Can Help You ............................................................................ 2 

1.4 Tailoring This Guidebook ............................................................................................... 3 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook ~ O D U C T I O N  1 - 1 

Hughes STX Corporation (HSTX) often conducts business from the challenging position of 
developing large,  complex software systems in a customer environment under tight deadlines 
and  with frequently changing or under-specified requirements. Creating a quality product 
under these conditions requires considerable planning and careful  management.  A  systematic, 
structured software development  process that is tailored to each project or task will lead to  a 
high quality software product. 

Undefined and ad-hoc software development practices often cause problems such as software 
that  does not meet requirements, is unreliable, is difficult to maintain, cannot be reused, and 
has inadequate documentation and a  project that is over budget, difficult to track 
developmentally, and unable to meet deadlines. By following tried and proven software 
engineering principles, these problems are significantly reduced, in these cases  by the early 
establishment of requirements,'more effective scheduling, and  ample documentation. Quality 
software is thoroughly documented and produces repeatable results, enabling subsequent 
users to fully understand  its design, structure, and  operation and have confidence in its 
products. 

1.1 Purpose 

The purpose of this Software Engineering Guidebook is to identify key aspects of the software 
development process, such  as lifecycle  models, development phases, development activities 
and methodologies, prototyping, tools, Configuration Management  (CM), Quality Assurance 
(QA), and software project  management. It offers  a  collection of methodologies and 
approaches  that HSTX software developers can use  as a reference to successfully meet the 
needs of their customers. 

This guidebook is intended to be a living document that will evolve over time; as additional 
information becomes available regarding effective and successful approaches and 
methodologies, it will be added to the guidebook. Feedback  from software developers, 
managers, and  support staff applying  the methodologies and techniques presented in this 
guidebook will be incorporated into  future editions, thus providing a forum for sharing 
effective software engineering techniques among software developers. In addition, as more 
and  more HSTX  staff routinely use this guidebook, it will provide the basis for  a  commonality 
to our software engineering approaches. 

A primary goal of the HSTX Software Excellence Initiative (SWEI) is  the continuous 
measurable improvement (cmi) of our software development process. The  following point 
must  be  addressed for us to achieve this goal: 

A process  must  first  be  manageable before it can be  improved in an orderly and sustained 
manner. A software  process  is  manageable  when it is: 
- Defined and Documented-Inputs, outputs, work activities, and responsibilities  are 

- Measured-Inputs, outputs, work  activities,  and  resources  are measured to provide a basis 

- Controlled-A  predetermined  mechanism  exists  to maintain a process in its desired state. 
- Continuously  Improved  and  Optimized-A  predetermined  mechanism  exists  to  improve 

outlined  and  delimited. 

for  control and improvement. 

and optimize the process.  Software  process  management  cycles  through  the  following  stages: 
- Process  definition 
- Measurement  and  feedback  from use 
- Evaluation  leading to improvement  and  optimization. 

This guidebook addresses  the first three steps leading to a  manageable software process;  i.e., 
defining and documenting the best-suited HSTX software development processes,  measuring 
software development progress, and maintaining a process in  its desired state. To achieve the 
fourth step, cmi of the software development  process, you  must share your experiences so that 

Version 1 Hughes STX Proprietary 



1-2 INIXODUCTION Software Engineering Guidebook 

future  editions of the guidebook can include this information to  benefit subsequent software 
development. 

1.2 Intended Audience 

This guidebook is intended for programmers, analysts,  engineers, managers, and software 
support (QA and CM) staff working in  the field of software development. Its objective is to 
provide  a  better  understanding of the  software  development process  to a  wide cross-section of 
HSTX. 

The guidebook includes descriptions of time-tested procedures and methodologies that can be 
selected and  used effectively  for a project of any size.  For  managers, this guidebook presents 
the  information necessary to manage a software development project. 

1.3 How This Guidebook Can Help You 

To be successful, a software development project must be delivered on time and within cost, 
and  it  must  meet  the customer’s specified requirements. For this to happen,  the management 
functions of planning, organizing, estimating, monitoring, and controlling must be 
understood  and  applied correctly. An important  part of this guidebook is the project 
management section (Section 5), which addresses  these concepts and  provides useful 
procedures for  their implementation. 

The guidebook begins with  an overview of the lifecycle  process  models. Choosing an 
appropriate  model  is crucial  to the success of a  software project;  it  sets the baseline  from  which 
progress will be measured. Selecting the model up front  with  the customer can prevent 
misunderstandings  during  the  course of the project. 

Do you know what your software is doing  and  what  it  should  do? Does your customer know 
what  the  software will do? Do you know what  conditions will  cause your software to  fail? Will 
successors to your project be able to reproduce  your results and continue to develop  and 
modify your software without  any significant delay? Are you satisfied with  your software 
development? 

If you did  not  answer yes to all of these questions, or if you wish you  could have developed 
your software differently, this guidebook can help you. If you did  answer yes to  any of these 
questions, we could use your expertise to further  upgrade this guidebook. 

To help you understand how  to develop software through the entire  lifecycle, this guidebook 
will provide you with  a quick  reference guide to software engineering principles,  tools, and 
techniques. This is a resource  from  which  selections  can  be taken and modified as needed. For 
example: 

Does your customer wish to know why you are  using  the spiral model rather than the 
familiar waterfall model? See the section on lifecycle  process models (Section 3). 

How do you translate a user’s needs  into  software requirements, then  into software 
design  to be  tested, documented,  and  turned  over for operational use? See the section on 
the  software development process (Section 4). 

Do you need to ensure that your  end  products meet their requirements and  that  outputs 
fulfill the  requirements established during  the  previous development phase? See the 
requirements section  (Section 4.1). 

Is your boss concerned about  a lack of sophistication in methodologies you are using to 
manage your software project?  See the section on project management (Section 5). 

Version 1 Hughes STX Proprietary 



Sohare Engineering Guidebook INIRODUC~ON 1-3 

How do you identify configuration items within your system at discrete points  in time? 
See the CM section (Section 6.1). 

How do you ensure that  your  product meets or exceeds specifications? See the QA 
section  (Section 6.2). 

Section 2, Introduction to Software Engineering, provides a broad overview of the various 
facets of software engineering. This section has a diagram  that can be used as a  road-map  to 
navigate through  the guidebook. Each  section in this book begins with  introductory 
information, followed by detailed subject material that  is compiled from various sources for 
easy reference.  Each section ends  with guidelines on tailoring the presented material to  a 
smaller project and references to books and publications that contain further details on  the 
subjects covered in this document. 

1.4 Tailoring This Guidebook 

This guidebook has already been tailored to the HSTX environment, and its information will 
require further tailoring to  make it relevant to  specific  projects.  The quality of a  project’s 
software system depends greatly on how the selected process is tailored to that project. 

Remember that this guidebook is  intended to provide useful and helpful guidelines. Its 
objective is to aid software development professionals within HSTX and make  them  aware of 
the various options available to them during all phases of software development. You are not 
being directed to follow all the methodologies presented he reuse  this book as  a rqository for 
information  and  mold  whatever you need  to  best suit your project.  Remember: There is no silver 
bullet that will solve all of your software engineering problems. 

Version 1 Hughes STX Proprietary 



Section 2 

Introduction to 
Software 

Engineering 

Version 1 Software Engineering Guidebook Hughes S?x Proprietary 



Software Eneineerinc Guidebook INI-RODUCTION TO somm ENGINEERING 2-iii 

Contents 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

Definition ........................................................................................................................... 2-1 

Introduction ....................................................................................................................... 2-1 

Propagation of Errors ....................................................................................................... 2-5 

Documentation .................................................................................................................. 2-6 

Reusability ......................................................................................................................... 2-8 

Cited  References .............................................................................................................. 2-10 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook INTRODUCTION TO SOWARE ENGINEERING 2- 1 

2.1 Definitions 

Software Engineering: 

”The application of scientific and engineering principles to  the: 

i) orderly transformation of a  problem into a  working solution, and, 
ii) subsequent maintenance of that software throughout  its useful life.”[DAVSOl 

”The practical application of computer  science,  management, and  other sciences  to 
analyze, design, construct, and maintain software and its associated 
documentation.”[THA87] 

”An engineering science that  applies  the concept of analysis, design, coding, testing, 
documentation, and management to the successful completion of a  large, custom-built 
computer  program.”[THA87] 

“Systematic application of methods, tools, and techniques to achieve a stated requirement 
or objective  for an efficient software system.”[THA87] 

2.2 Introduction 

The software engineering discipline is a  complex  network of management, engineering and 
development, and  support  and control functions. To understand  and  apply  the various 
software engineering functions effectively, we  must first understand how all these functions 
relate to each other. 

Figure 2.2-1 presents the  entire software development  process and shows: 

The relationship between the primary activities within the software development  process: 
software project  management  activity, software development  activity, and software 
support activity 

The various phases of the software development  lifecycle and  the activities performed 
during these phases 

The points where documentation and deliverables are (typically) produced throughout 
the development of the software 

The documentation process,  which continues throughout the lifecycle;  documentation is 
used to describe the  product  and serves as a medium of communication  between the 
various personnel involved in  the software development 

The evolution of documentation  that is started in one  phase as  it changes during 
subsequent phases, until  it is available for reference in later stages of development 

The points where reviews are typically held to monitor the quality of the  product being 
developed 

Rather than trying to digest this diagram all at once, it is recommended that you  refer  back to 
it often as you read the other sections in this guidebook. This diagram will help you  to identify 
points of reference in the lifecycle as you proceed through the guidebook. You can also use  it 
to locate topics in the lifecycle that  are of interest to you; each major entity  is referenced  to its 
corresponding section number in the guidebook. Each  major subsection (development phase) 
in Section 4 begins with a ”zoomed-in” view of the  part of the diagram that is related to that 
particular phase. 

Version 1 Hughes STX Proprietary 



2-2 INTRODUCTION TO SOFTWARE ENGINEERING Software Engineering Guidebook 

Figure 2.2-1 shows an integrated view of software project  management, software 
development, and software support activity: 

Software  project  management  activity  comprises: 

- Planning and organization (Sections 5.1 and 5.2) 
- Estimation:  cost,  size, and schedule (Section 5.3) 
- Collecting  Software  Metrics  (Section 5.4) 
- Scheduling and tracking  (Section 5.5) 
- Risk management (Section 5.6) 

Software development activity comprises: 

Requirements analysis and specification  (Section 4.1) 
Preliminary design (Section 4.2) 
Detailed design (Section 4.3) 
Coding and  module testing (Section 4.4) 
Integration and testing (Section 4.5) 
Systems testing (Section 4.6) 
System  acceptance  (Section 4.7) 
Operations  and maintenance (Section 4.8) 

Software support activity comprises: 

- Configuration Management (CM)  (Section 6.1) 
e - Quality Assurance (QA) (Section 6.2) 

The software development process  depicted in Figure 2.2-1 is based on a waterfall model (see 
Section 3). This should not be  taken  to mean that this guidebook recommends using the 
waterfall model over  the others. The primary purpose of the diagram is to show all the 
interrelationships between the activities--for illustrative purposes, this graphical 
representation happens to  resemble the waterfall model. Because  most other process models 
are variations of the waterfall model, a similar relationship will  exist between the primary 
activities as is depicted in this diagram. 

Figure 2.2-1 presents a number of deliverables (documentation or otherwise) throughout the 
lifecycle.  It is important to understand that a deliverable does not  necessarily mean a product 
that is due to the customer-a deliverable is a product created during a particular phase of 
development that  is necessary  for other software developers to  perform  their duties. For 
example, even though a customer does not  ask for a software requirements document, the 
software requirements document is still a deliverable; it will be used by the software designers 
to design the software,  project managers to monitor and control the evolution of requirements, 
and testers to test the software. 

Developing a quality software product is not easy. Current software development practices 
often produce software that does not  do what the customer had  expected and is over budget, 
unreliable, and extremely  difficult  to  maintain.  Most of the problems plaguing software 
developers stem from improper software development practices.  Often, the software being 
produced is a complex product. The  process  for creating a complex, quality product  should 
be  well thought  out  and managed. 

For instance, consider the process of constructing a building  and  its similarity with 
developing software. For a building to  be constructed, a number of things must happen: 

An architect meets with the client to learn why the  building is required and what  it will  be 
used  for, who  it will  be used by, the number of people  it will be used by, the times of the 
day  it will  be  occupied,  etc. (identifies the requirements). 

Version 1 Hughes STX Proprietary 



P c 
4 



Software Engineering Guidebook INTRODUCTION TO SOFIWARE ENGINEERING 2-5 

The  architect develops conceptual drawings of the building that show the client what the 
building will look like from the outside, along with sketches of the interior. 

further clarify ideas presented in the conceptual drawings, to identify requirements that 
may  have  been missed, and to  check the feasibility of constructing the building. 

When the architect and the client agree on the description of the building being proposed, 
the architect will generate detailed blueprints (design) and specifications  for the building 
contractor to construct the building. 

The architect may then build  a  scale  model of the building (prototype) being proposed  to 

In accordance with the blueprints and specifications, the contractor prepares the 
foundation  and  starts construction of the building. 

At every phase in the construction, the architect and contractor use well-established and 
accepted techniques. They  follow  well-defined standards while developing the blueprints 
and  during construction. The  objective is to be able to clearly communicate what needs to be 
done to all the  various subcontractors involved in the construction of the building. It is 
evident  that each of these steps is well defined and needs to  occur for a  successful building 
construction project; failure to communicate and  improper construction practices  will cause 
serious  harm  and will not meet the client’s requirements. There is no reason why the software 
development process should not be as  structured as the building construction process.  The 
software development process should also progress systematically in phases: 

Analyze and  understand the problem. 

Define what the software is required to do to solve the problem. 

Describe how the software will do what is required to solve the problem. 

Program the  modules to do what the software requires to solve the problem. 

Test the  modules to verify that the software does what is required to solve the problem. 

Throughout this guidebook we will be referring to various parts of the software using the 
following terminology: 1) software system, 2) software subsystem, and 3) software module. 
Figure 2.2-2 is a graphical representation of these terms;  keep the definitions of these terms in 
mind  as you read the rest of this book. 

2.3 The Propagation of Errors 

All developers go through the different phases in  the software development process with 
varying degrees of formality at each phase. Products and activities can be evaluated at every 
phase of the  development process.  The  risk of errors  propagating  through the products of the 
later phases diminishes when developers spend the additional effort at each phase to ensure 
the correctness of the  product of that phase. In  the real world, errors occur; the ability to catch 
these errors  (and rectify them) early in the  development process is the key to developing a 
successful product. 

The activities and  products of each phase depend upon  the actions taken in the previous 
phase($; it is clear that we must define what the software will do (software requirements) 
before we can attempt to describe how the software will be built (design). Errors made  during 
the  development process can have a  major impact on  the quality and cost of the software. 
Following a well-planned, well-defined, and structured software development  process will 
minimize the possibility of errors and control the  quality of the software product. Because 
errors created in one phase are inherited by the next phase, decisions made in later phases 
may be based on erroneous products of previous phases. Thus, the effects of the  errors  are 
magnified in later phases of development. The later in the development process an m o r  is detected, 
the more costly i f  is to f ix .  Figure 2.3-1 demonstrates  the cumulative effects of errors during  the 
process of software development. 

Version 1 Hughes STX Proprietary 



2-6 ~TRODUCXION TO SOFIWARE ENGINEERING Software Engineering Guidebook 

I 1 . 

1 SOFTWARE SYSTEM: A "chunk of software that is separately  specified, tested, and delivered. Among other things, this 
~ means that each software system has its own requirements specification and test (in DoD terminology this  is a  Computer 

Software Configuration Item [CSCI]). 

SOFTWARE SUBSYSTEM: A software subsystem consists of one or more modules that are logically or functionally related. 
Software subsystems can  be composed of other software subsystems, and there can be several levels of software 
subsystems between the software system and software module levels.  Because of the diversity of design methods and their 
corresponding design entities, there are no universal criteria for identifying a software subsystem. For example,  a software 
subsystem may  be  an  independent  area in a structured design,  a  package or task in an Ada PDL design,  one or more objects 
in an object-oriented design, or a process in a  data flow diagram. In general,  however, the software subsystem is the basis 
for the preliminary design version of the software design document (in DoD terminology this  is a Computer Software 
Component [CSC]). 

SOFMlARE  MODULE A software module is the lowest level design entity that is implemented in code. Software subsystems 
are  made up of  a  set  of modules that are related to each other in some way  (e.g., control relationship in a structure chart or 
task graph). Software modules may  be  shared among software subsystems (in DoD terminology  this is a  Computer Software 
Unit [CSU]). 

SWDGO19 

Figure 2.2-2. Software Component Terminology 
2.4 Documentation 

It is necessary  to  document your software  development  activities  as  part  of  the  software 
development  process. This guidebook will provide you with guidelines for  documentation  at 
the  various  phases  of  development. 

The  specification and design of the system must be clearly understood by the 
analysts,  designers,  management, and customers. Because  verbal descriptions 
are often  too ambiguous or vague and are unavailable  for future reference, the 
specification and design  must  be  documented  using  text  and diagrams for 
clarity  and future reference. A well-documented  specrfication  and  design 
provide an excellent  reference point to assess the extent of development and 
greatly  reduce  the risk of falling  into  the "I am 90 percent  finished:  syndrome. 

During  the  initial  phases of the  lifecycle, the documentationis the specification 
and it is the  design of the system. If the documentation is bad, the design is bad. 
If the documentation does not  exist,  there is no  design,  only  people  thinking 
and  talking about a  design,  which is of some  value, but not  much. 

[ROY871 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook INTRODUCTION TO SOFIWARE ENGINEERING 2-7 

REQUIREMENTS 
SPECIFICATION 

Correct Erroneous Erroneous Design Design 
Design Based on 

SDecification 

- 

Figure 2.3-1. The  Cumulative Effects of Errors, 0 IEEE 1983 

The value of good documentation becomes apparent  in  the following: 

Requirements Specification-The requirements specification is the 
communication tool between the developer and  the customer.  It shows the 
customer that  the developers understand what the customer wants. The 
software requirements specification  is then used as a management tool. By 
establishing a requirements baseline, managers and developers will be able 
to control changes by estimating impacts on cost and schedules whenever 
requirements are modified. 

Testing-Requirements can be verified and problems can be analyzed by 
anyone, not just the person who developed the code, thereby reducing the 
burden  on  the developers. 

Operations-Without  good documentation, only the individuals who 
developed the software can effectively operate it. With  clear 
documentation, operations personnel can operate the software cheaply 
and more effectively. 

[DAVSOI 

Version 1 Hughes STX Proprietary 



2-8 INTRODUCTION TO SOFTWARE ENGINEERING Software Engineering Guidebook 

Maintenance-Requests for corrections,  changes, and enhancements to the 
software are more  easily addressed when developers can  refer to 
documentation that describes the software being modified. 

Reusability4ood documentation will allow developers to idenbfy 
reusable software components.  When good documentation is available, it 
is possible to mod+ and enhance the existing software more efficiently for 
use in  another system (if it is not directly reusable). Without 
documentation, valuable time and  effort  are lost in trying to determine 
what  the software does (and how it does it), often leading to the software 
being discarded. 

Documentation provides an ongoing description of the system. Document 
deliverables are used by managers to measure progess  and to mark the 
transitions between lifecycle phases. 

As software  developers, it is our duty to  inform  and  educate our customers of the  inherent 
value in the  timely  (and  usable)  documentation of the  development  activities  and  products. 
We should  never  allow  ourselves to  fall into the trap of thinking  “...we’ll  document  the  system 
after it has been  built...”; the documentation will never get done after the system has been built. 
Many developers  and  customers  wrongly  assume that by  not  documenting during 
development,  they  are  saving  development  time.  Though it might  seem as though 
considerable  progress is being  made  initially,  the  development  will  fall apart when  changes 
need  to be made and the software  must  be  redesigned  and  maintained. This is especially true 
when  you  consider our work  environment of rapidly changing,  loosely  defined  requirements 
and extremely  tight deadlines-good documentation is one  of the keys  to  project  success. A 
favorite argument of anti-documentation  proponents is that  the  software  requirements are 
going  to  change  anyway, so there  is  no  point in wasting  time  on  documentation. Thefact that 
the requirements change is precisely why they must be documented. 

2.5 Reusability 

It is important to  emphasize  the  principIes of reuse  throughout  the  software  development 
lifecycle.  The  reuse of existing  experience is the  principal  ingredient  for  success in any  field. 
Without the ability to  reuse,  everything  must be relearned and rebuilt  from  scratch. 
“Reinventing  the  wheel” in every  aspect of software  development  can be a costly,  unreliable, 
and unproductive  venture. All products  generated during the  software  development 
lifecyle-requirements,  design,  code,  documentation, and test  plans-have the  potential  to  be 
reused.  Figure 2.51 illustrates  reuse  activities within the software  development  lifecycle. 

Rme  and resources are saved in development, testing, and porting. 

Bugs are more likely to be detected (and subsequently corrected) because: 

- Systems are tested each time they are reused. 
- When  a bug is detected, all systems reusing a particular component 

benefit. 
Code developed with reuse in mind is far more maintainable. 

Elimination of redundancies produces smaller, more manageable systems. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook INTRODUC~ON TO SOFIWARE ENGINEERING 2-9 

of Require- 
ments and 

Specification 

Designing for Reuse 

Candidates for 

'"$5 .".'. .-' :ig 
;.:$* '"; 
.:.:.... 

. . . . . .  .:.: 
:. ........... .. 

.......... 
i ..... : .... :.:. ., , ,..::. .:.. 

Modification of  Reusable Modules 
.&::.:.>:: :.:: . .  ........ 

Time - 
Figure 25-1. Reuse  Activities in the Lifecycles 

Domain  Analysis-Identifies  common  requirements  across  the 
application domain and helps  produce  a  model  that  describes  common 
functions of a spedfic application  area. This can  later be tailored  to 
accommodate  specific  differences. 

Requirements GeneralizationXovers those  requirements that are 
intended  to  describe  a  "family" of systems  or  functions. 

Designing for Reuse-Provides  modularity,  standardized  interfaces,  and 
extensible and maintainable  code. 

Reuse Libraries-Hold reusable  source  code  and  associated 
requirements,  designs,  documentations,  and  tests results. These produds 
may be used verbatim or modified  to  fit the purpose. 

during the operational phase of the software  adhere  to  the same principles 
that promote  reuse, i.e.,  "quick fixes" may  complicate future reuse. 

Reuse Preservation-Ensures that changes  and  enhancements made 

The  benefits of reuse  can  be  maximized  by  planning  for  reuse  early in the development 
process. 

For  example,  to write  reusable  software,  keep in mind  the  following  guidelines: 

Set  in-line  documentation standards to  increase  understandability of code. 

Set  naming  constraints  for  constants, types, and  functions. 

Set  usage  conventions  for  functions  governing  argument  order  and data type. 

SWDGW1 

[SEL-81-305] 

Version 1 Hughes STX Proprietary 



2- 10 INTRODUCTION TO SOFTWARE ENGINEERING Software Enprineering Guidebook 

Encapsulate  all data structures. 

Adhere to industry standards (ANSI, POSIX, etc.). 

Strive  for  portability (to UNIXes, VMS, DOS) whenever  possible). 

See  Section 4.4 for  more  details. 

2.6 Cited References 

[DAVSO] Davis, A., Software  Requirements:  Analysis and Specification,  Englewood  Cliffs, 
New  Jersey:  Prentice-Hall, 1990, p. 7. 

ITHA871 Thayer, R., Tutorial:  Software  Engineering  Project  Management,  Ed. R. H. Thayer, 
Computer Society  of  the  IEEE,  Washington, DC, 1987, p. 438. 

[THA87] Thayer, p. 438. 

ITHA871 Thayer, p. 438. 

[DAVSO] Davis, p. 25. 

[ROY871 Royce, W., “Managing the  Development of Large  Software  Systems,”  Tutorial: 
Software  Engineering Project Management, Ed. R. H. Thayer,  Computer  Society of 
the IEEE, Washington, DC, 1987, p. 121. 

[SEL-81-3051 Recommended  Approach to Software Development, Rev. 3, Software  Engineering 
Laboratory Series, SEL-81-305, NASA Goddard Space  Flight  Center, June 1992. 

Version 1 Hughes STX Proprietary 



Section 3 

Lifecycle Process 
Models 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software Engineering Guidebook LIFECYCLE PROCESS MODEL 3-iii 

Contents 

3.1 Introduction ................................................................................................................... 3-1 

3.2  Waterfall  Model ............................................................................................................. 3-2 

3.2.1  Lifecycle Phases of the Waterfall  Model ........................................................ 3-3 

3.3 Spiral  Model ................................................................................................................... 3-4 

3.4  Incremental  Development  Model ............................................................................... 3-6 

3.5 Prototyping and Prototyping Models ........................................................................ 3-8 

3.5.1 Planning for Prototype Development ............................................................ 3-9 

3.5.2 The Throwaway Prototype ............................................................................ 3-10 

3.5.3 Evolutionary Prototyping Model .................................................................. 3-11 

3.5.4 Throwaway Prototyping vs . Evolutionary Prototyping ........................... 3-12 

3.5.5  Types of Prototypes ......................................................................................... 3-12 

3.6  Selecting  a  Model ........................................................................................................ 3-13 

3.7 Cited  References .......................................................................................................... 3-15 

Version 1 Hughes S'D( Proprietary 



Software  Engineering  Guidebook LIFECYCLE PROCESS MODELS 3- 1 

3.1 Introduction 

A lifecycle  process  model  assists  planning  by  defining  the  expected  sequences of events, 
development  and  management  activities,  reviews,  products,  and  milestones  for  a  project.  It  is 
difficult  to  manage  a  software  project without understanding the  development state of the 
project,  especially  since a software product is a  relatively  abstract  entity  prior  to  completion. 
The  phases  in  a lifecycle  process  model  increase  the  visibility of individual  activities  within 
the  complex,  intertwined  network of events during the  development of a  software  product. 
The  stepwise  arrangement of phases  provides  milestones during the  course of the  project 
[SZT881. 

Establishes  verification  points at which products are 
reviewed  for  completeness,  correctness,  and  consistency 

Forms  a  stable  basis for proceeding  into  the  next  activity 

Eliminates  many  problems and enhances  the  probability 
of success  in  the  following  phase  by ending the current 
phase  with  a  review of its products 

Lifecycle  Process  Models: 

Assist  in  planning  and  provide  a  common  frame of reference  and 
terminology. 

Define  sequences of events and phases. 

Idenbfy the activities  to  be  performed. 

Establish  reviews  to  be  scheduled. 

Define  the  interim and end products that need  to  be produced. 

Provide  milestones  in the schedule  to evaluate the  plan  and  approach. 

Provide the basis  for  producing the software  development  plan,  cost 
estimates, and schedules. 

Encourage  developers  to  specify what the system  is  supposed  to do 

Encourage  developers  to  plan  how  components  will  interact (design) 

(define the requirements)  before building the  system. 

before  building  the  system. 

Enable  managers  to  track  progress  more  accurately  and  to  uncover 
slippages  early. 

documents  that  can  later  be  used  to  test  and  maintain  the  system. 
Recommend  that the development  process  generate  a  series of 

Reduce  development and maintenance  costs. 

0 Enable the development of a  more structured and  manageable  system. 

Various  types  of  process  models  can  be  used  to  model  the  software  development  lifecycle. 
This section of the  guidebook  will  present the waterfall,  the  spiral, and the  incremental 
development  models.  In addition, the throwaway  prototype  and  the  evolutionary prototype 
model will be described. 

[DAW?]  

Version 1 Hughes STX Proprietary 



3-2 LIFECYCLE PROCESS MODELS Software Engineering Guidebook 

Remember, models are prototypical guidelines, not gospel-they serve as frameworks and provide 
checklists.  They are developed tohdp, not to restrict. They need not be followed  exactly; the important 
point is to be  aware of all the available options and to understand  why you are deviating from the 
model (if you a r e b i t  reminds you  to  make  a consaous  and informed decision. 

[ISD48] 
3.2 Waterfall Model 

The  classic  waterfall  model  was  first  proposed  by  Winston  Royce in 1970 [ROMO]. Figure 3.2- 
1 shows one representation of the waterfall  model.  The  model  progresses in distinct  phases of 
development.  The  boxes  represent  the  various  phases of software  development. The  solid 
arrows  indicate  the  direction of progress,  and  the  ellipses  between  the  phases  are  the  reviews 
that  typically OCCLU at the  end of a  particular  phase and before the following  phase.  The  dotted 
arrows  show  possible paths for  back-tracking  through the phases in case  problems  occur.  For 
example, if a  new  set of requirements  is  identified during detailed  design,  all  related  detailed 
design  activities  must  be  suspended  while  further  requirements  analysis is done to address 
these  new  requirements. 

The  waterfall  model  has  gone  through  many  refinements  to  deal  with  the  increasing 
complexity of software  development  projects.  Initially,  the  model did not  have the back- 
tracking arrows to  represent  paths  to  retrace  through the developmental  stages. Most of the 
models  used  by  contractors  and  Government  agencies are some  variation of the  waterfall 
model. 

Requirements Software  Development  Plan 
Software  Requirements  Specification 
Data Flows (DFDs or  similar  diagrams) ---+ I Preliminary 

Design Software  Design  Document 
Operation  and Support  Documents 
Software  Test  Plan 
Software  Development  Files 

Design Software  Design  Document 
Operation  and  Support  Documents 
Software  Test  Plan 
Software  Development files 

SSR: 
PDR: 
CDR: 
cw: 
TRR: 
FCA: 
PCA: 
FQR: 

I 
L - -  Software  (Source  and  Object)  Code 

Software  Design  Document 
Software  Development files 

Software Development files 
Software (Source and  Object)  Code 

Software  Subsystem Test Procedures 
Operation  and  Support  Documents 
Software  Test  Description 

I 
L - -  

Software  Test  Report Systems 
Testing 
4 Software  (Source  and  Object)  Code 
I Operation  and  Support  Documents 

I Operations  and  Maintenance  Manual Software Specification Review I 

Preliminary Design Review 
System 

Test Readiness Review 
Code Walkthrough 

PCA, and FQR) Critical Design Review 

Formal Qualification Review 
Physical Configuration Audit 
Functional  Configuration Audit 

Software Test Report 

..-- Acceptance (FCA, 

4 

Operations and L - - 
v I 

Maintenance 
SWDG002 

Figure 3.2-1. The Waterfall  Model-Phases,  Reviews, and Major  Products 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook LIFECYCLE PROCESS MODELS 3-3 

3.2.1 Lifecycle  Phases of the Waterfall  Model 

Requirements Analysis Phase 

The  requirements  analysis  phase  includes  activities that analyze  the  software  problem  and 
develop  specifications  describing  the  external  behavior of the  software  system to  be  built.  The 
requirements  specifications  are  also  known  as  the  functional  description  or  functional 
requirements.  The  Software  Requirements  Specification (SRS) demonstrate to the  customer 
that  the  developers understand the  software  problem and have  defined whut the  software 
must do to  solve  it.  The  software  requirements  describing  the  functionality of the  software,  the 
external  interfaces, and the  expected  performance are documented in the SRS. The 
requirements  specification  is  written  to  be  understood  by the customer,  users,  developers, and 
testers. This phase culminates  with  the  Software  Specification Review (SSR). 

Preliminary Design Phase 

The  preliminary  design  phase  develops an implementable  design  from  the SRS. The  following 
activities are performed during the  preliminary  design: 1) refine  the  software  system  into 
smaller  software  subsystems; 2) allocate  requirements  to  these  subsystems; 3) develop  the 
formal  test  approach; and 4) finalize  decisions  regarding whether software  subsystems  should 
be  built,  purchased,  or  reused  and  select  the  Database  Management  System (DBMS),  if 
applicable.  The  software  subsystems are documented in the  Software  Design  Document 
(SDD) in terms of their inputs, outputs, and functions.  The SDD describes how the  software 
will  meet  the  requirements  specified in the SRS. The  preliminary  design is also  known  as  the 
high-level  design,  architectural  design,  or  functional  design. This phase  culminates  with  the 
Preliminary  Design  Review  (PDR). 

Detailed Design Phase 

The  detailed  design phase develops  the  lowest  level of the  software  design.  The  software 
subsystems are refined  to  identify  the  software  modules  that  will be translated  into  code.  The 
algorithms and internal logic  for  these  software  modules are defined  using  a  design 
description  language. This design  information down to  the  module  level  is  captured  in  the 
SDD.  The detailed  design is also  known as program  design. This phase  culminates  with  the 
CriticaI  Design  Review  (CDR). 

Coding and Unit Testing Phase 

During  the  coding and unit testing  phase,  the  software  modules are coded  according to the 
designs  developed during the  design  phases.  After individual modules  are  coded,  they  are 
reviewed using code  walkthrough and/or code  reading  techniques by other  developers. 
Following  successful  review,  the  modules  are  tested (unit tested)  to  ensure  that  they  perform 
their  functions as required. The software  modules are normally  placed under configuration 
management at this time. This phase  culminates with the completion of coding and successful 
testing of all  modules. 

Integration and Testing Phase 

During  the integration and testing  phase,  the  software  modules  coded  in  the  previous  phase 
are integrated to form  software  Subsystems.  These  subsystems  are  then  individually  tested. It 
is  recommended that these  tests are performed  by individuals who are not part of the 
development  team (though the  developers may help in the testing  process). This phase 
culminates with the Test  Readiness  Review (TRR). 

Systems  Testing Phase 

During  the  systems  testing  phase,  the  software  system is tested in its hardware  environment 
to  ensure  that  it  functions as specified in the  software  requirements. This is the final  phase of 
testing to ensure that all  requirements have been  satisfied and that  the  system is ready  for  the 
customer. 

Version 1 Hughes STX Proprietary 



3-4 LIFECYCLE PRWESS MODELS Software Engineering Guidebook 

System  Acceptance  Phase 

During  the  system  acceptance  phase, in addition to  formal  testing,  there  are  several  reviews  to 
verify  that  the  hardware,  software, and interfaces of the  system  are  complete and documented 
for  operational  installation.  These  are  the  Formal  Qualification Review  (FQR), the Functional 
Configuration Audit (FCA), and  the  Physical  Configuration  Audit  (PCA). 

Operations and Maintenance Phase 

The operations and maintenance phase occurs  when  the  software  is  delivered and operational 
at the  end  site.  It is important  that during this phase of the  software lifecycle, requested 
software  changes do not  adversely  affect  the  operational  software.  Software  changes should 
be thoroughly  tested and regression  tested so that original  functionality is not degraded by 
new  software. If the  requested  software  changes include changes to the  requirements, it may 
be desirable  to  perform  all of the  previous  software  lifecycle  activities  again,  beginning with 
requirements  analysis. 

[IS0481 
3.3 Spiral Model 

The spiral model  represents  the  activities  related to  Software  development as a spiralling 
progression of events that  moves outward from  the  center of the  spiral. For  each  development 
phase from  project  conception through preliminary  design, this model  places  great  emphasis 
on defining the objectives and evaluating  alternatives and constraints,  evaluating  the 
alternatives and their  potential  risks,  developing and verifying the  compliance of an interim 
product (e.g., prototype,  document), and planning for  the  next  phase,  using  knowledge 
gained  from  the  previous  phases.  The  primary  goal  is  to ensure that  most of the development 
objectives,  alternatives, and risks  have  been  identified,  addressed, and evaluated  before 
proceeding to the next  phase of development. 

As illustrated in Figure 3.3-1, each cycle in the spiral model  proceeds through the following 
four quadrants (steps): 

Quadrant A-Determine  Objectives,  Alternatives, Constraints 

Each  cycle of the spiral begins  with Quadrant A, where  the  following  are  identified: 

The  objectives  for  the  portion of the product being  addressed (e.g., performance, 
functionality,  ability  to  accommodate  change) 

The alternative approaches  for  implementing this portion of the product (e.g., approach 
A, approach B, reuse,  buy) 

interface) 
0 The  constraints  imposed  on  the  application of the  alternatives (e.g.,  cost, schedule, 

Quadrant B-Evaluate Alternatives:  Identify,  Resolve Risks 

The risks associated  with  each alternative are evaluated using formal  risk  analysis  (see  Section 
5.6) with respect  to the objectives and constraints. This process  frequently  identifies  areas of 
uncertainty that are often  significant  sources of risk.  Prototypes,  simulations,  questionnaires, 
and analytical  models  may be required  to idenbfy cost-effective  approaches  to  resolve  the 
risks. The  next step depends on the results from the evaluation of the risks, and could be any 
of the  following: 

Proceed with the  next  phase. 

Develop  a  model. 

Change  the  objectives. 

Version 1 Hughes STX Proprietary 



Software  Engineering Guidebook LIFECYCLE PROCESS MODELS 3-5 

CUMULATIVE COST 

COMMITMEN 

PARTITION 

Figure 3.3-1. Spiral Model of the Software Process 

Version 1 Hughes STX Proprietary 



3-6 LIFECYCLE PROCESS MODELS Software Engineering Guidebook 

Revise  the  constraints. 

Adopt  evolutionary  development. 

stop. 

Quadrant C-Develop,  Verify  Next-Level Product 

A  product is developed. This product may  be  a  plan,  software  requirements, software design, 
code,  simulation, or prototype to address a  specific  issue. This product is then verified  to 
ensure that it meets  the  objectives set in Quadrant A. 

Quadrant D-Plan  Next Phases 

The  next phase of development is planned.  These plans are based on the information and 
lessons  learned  from the last completed step. 

Note:  Once the detailed design of the software is complete, the spiral model proceeds to code and module testing, 
integration testing, and acceptance testing,  just as the waterfall model does. 

As an example,  locate the cycle of the spiral that includes software design. Trace the spiral 
back  (counterclockwise) until you reach Quadrant A. Notice the activities  that  need  to  take 
place  for the development of the  software  design.  The spiral model  moves through the 
quadrants, performing the following  activities: 

All the  objectives of the design are explicitly  identified, along with the alternative design 
approaches and constraints  for  each approach. 

Risk analysis is performed  to determine possible  problems (and mitigation plans) that 
could arise during design (technical  problems as well as problems such as staffing). 
Prototypes are created if needed  to  investigate risks. 

If necessary,  models and simulations are created that address specific portions of the 
product  (cycles of the spiral may be required  for some of the issues being addressed). If all 
risks have been  satisfactorily addressed, the  software design can  be generated. The  design 
is then verified  to ensure that it meets the objectives. 

The development plan for the integration and test plan is produced. 

The  spiral  model  encourages  analysis of objectives,  alternatives,  and 
risks at each step of development,  providing an alternative  to one big 
commitment/decision  point at the start of the project. In Figure 32, the 
farther  one  moves  away from the intersection of the axes, the  greater 
the  cost  commitment. 

The  spiral  model  allows  for  the  objectives to be  re-evaluated and 
refined  based on the latest  perception of needs,  resources,  and 
capabilities. 

3.4 Incremental  Development  Model 

Incremental development is the process of building software by initially constructing a part of 
the entire  system and progressively adding functionality in successive  builds.  Because the 
initial  capability is achieved  quickly,  costs  normally  associated with development prior to  the 
initial  release are seemingly  reduced;  these  costs are actually spread across  a number of 

Version 1 Hughes STX Roprietary 



Software  Engineering  Guidebook LIFECYCLE PROCESS MODELS 3-7 

builds. By providing operational builds of the system more quickly, the possibility that  the 
user’s requirements may change during  the development of a build is also reduced; changes 
in requirements may also be deferred to  a later build of the software. 

It must be noted that when  the incremental development model is  used,  the software is 
intentionally constructed to (initially) satisfy fewer requirements. However, the software is 
designed to facilitate  the  incorporation of new requirements in later builds. Figure 3.4-1 is  an example 
of the incremental development model. 

Initial development time is reduced (because of the reduced functionality). 

Software can be progressively enhanced for a longer period of time (because it is 
designed for growth). 

The operational date is earlier (although at limited functionality). 

Mechanisms  to address/cope with changing requirements are provided. 

Tradeoffs of functionality and performance between versions are allowed. 

Figure 3.4-1. Incremental Development Model [SEL-81-305] 

Version 1 Hughes STX Proprietary 



3-8 LIFECYCLE PROCESS MODELS Software Engineering Guidebook 

This software  development  approach  is  different  from  the  evolutionary  prototype  model  (see 
Section 3.5.2) because  the  implication  is  that in the incremental  development  model  the 
developers understand most of the  requirements but are choosing  to  provide  the  functionality 
in subsets of increasing  capability. 

~~~~ ~ 

Remember, when using the incremental development process model, the
software must be designed carefully to easily support additional functionality
and growth. The functionality that is not being provided in the current build
is defied for a later build, but the plans for adding this functionality must be
well thought out and analyzed.

3.5 Prototyping and Prototyping Models

Prototyping i s the technique of constructing a partial implementation of a system so that
customers, users, or developers can learn more about a problem or a solution to that problem
[DAVSO]. The key word here is "partial"; if you were implementing the complete system, it
would no longer be a prototype, it would be the system. Prototypes can be developed in the
requirements, design, or coding phases of the software development lifecycle.

Prototyping is not a euphemism for "hacking," nor is prototyping an excuse to develop
undocumented and unstructured code. Remember, the primary objective in developing a
prototype is to learn; a completely undocumented, unstructured, and sloppy prototype will
outweigh its usefulness with time wasted by developers attempting to figure out how it was
constructed.

Demonstrate a capability either internally or to an external customer.

Assess a design approach or an algorithm for correctness or efficiency.

Evaluate the ability of a software development system to support efficient
software production or to support a given number of programmers.

Provide a measurement vehicle when estimating user response times,
recovery times, transmission times, code expansion factors, etc.

Validate requirements by demonstrating that they can be implemented
and exploring possible error conditions that requirements must cover.

Clanfy ambiguous requirements.

Provide a vehicle for soliciting end-user input, primarily on the Human-
Machine Interface (HMO.

Form a basis for the full implementation effort.

Serve as an early, concrete milestone in the development schedule.

Demonstrate feasibility of new and evolving technology.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook LIFECYCLE PROCESS MODELS 3-9

The degree of formality of a prototype should match the intended use of
the prototype. This means that the formality of both the processes and the
products must be considered. For example, a prototype that is
implemented to provide an initial operational capability should have
rigorous reviews, because it will be delivered as a part of the final system.
A prototype whose purpose is to display screen format to solicit user
input may not require such formal reviews if it will be discarded (or used
only for further information gathering) and its robustness is not an issue.

Prototypes must be produced early enough to have an effect. For example,
if a critical algorithm is being prototyped to determine whether it will
provide the necessary accuracy, the optimum time for the prototype isnot
just prior to the CDR; if the prototype shows that the algorithm is
inadequate, there will be effects on requirements and top-level design as
well as on detailed design, and the results will not be ready in time for the
CDR.

The following is more of a recommendation: Because a prototype is still a
product, it should reflect the same high quality that any other product
would have. The ultimate use of a product is sometimes unknown-a
prototype that begins as a proof of concept might evolve into operational
capability. It can be difficult to convert a questionable quality prototype to
a high-quality operational product. In all prototypes, comments should
make sense, the design and source code should be structured, inputs and
outputs should be consistent, and so on.

[SEL-81-305]
3.5.1 Planning for Prototype Development

Managing a prototype development effort requires special care and attention. It is often
difficult to foresee the progress of the development effort and therefore difficult to measure.
Beware: A prototyping effort could continue indefinitely if the completion criteria and evaluation
guidelines are not established. It is essential to write a plan to monitor and track every
prototyping activity. The detail of the contents of the plan should be proportional to the
prototyping effort; i.e., a one-page plan would suffice for small efforts as long as the issues in
the following table have been addressed.

The purpose and use of the prototype

Brief description of the work to be done and the products to
be generated

Technical approach

Completion criteria

Evaluation criteria and methods

Resources required: effort, size, staff, and hardware and
software estimates

Schedule

[SEL-82-305]

Version 1 Hughes STX Roprietary

3- 10 LIFECYCLE PROCESS MODELS Software Engineering Guidebook

3.5.2 The Throwaway Prototype

A throwaway prototype is constructed to learn more about the problem or its solution. This
prototype is discarded once it has been used and the requisite knowledge has been gained IDAV881.
Though these prototypes are throwaway, the design and code should be understandable to its
developers for the prototype to fully serve its purpose. The throwaway prototype should be
delivered quickly-there are no rigorous lifecycle phases to be followed. The advantage lies in
quickly gaining additional knowledge about a certain aspect of the system so that the normal
development lifecycle of the system can proceed accordingly. A throwaway prototype can be
developed during the requirements, design, and coding phases of any of the lifecycle process
models (waterfall, spiral, incremental build, evolutionary prototyping, etc.).

Determine the feasibility of a requirement.

Validate that a particular function is particularly necessary.

Uncover missing requirements.

Clanfy an ambiguous requirement.

Determine the validity of the user interface.

Write a preliminary SRS.
Implement a prototype based on a preliminary SRS.
Achieve user experience with the prototype.

Beware of a common scenario that occurs when a throwaway prototype is delivered: the
customers say they love the prototype and want to make it an operational system. It is the
responsibility of the developer to explain to the customer that a good prototype does not
mean it is a great product. As Davis states, ”That’s like saying they want to put wings on a
prototype of a flight simulator and fly it for real!” [DAV881

The following are two ways to prevent the prototype from being used as the actual system:

Prototype the system in pieces (do not build an end-to-end prototype).

Simulate the system’s interaction with data.

Version I Hughes STX Proprietary

Software Engineering Guidebook LIFECYCLE PROCESS MODELS 3- 1 1

Figure 3.5.2-1 represents throwaway prototypes being developed while using a waterfall
model.

- - - - - -
I

- - - - - -
I

Requirements - - - - - - I SystemTest I I Acceptance I System - - - -
r - - - - - - l L - - - - - - l

Analysis I Planning I Test Planning 1 - - - - - - Maintenance
A

- - - - - -
I
I Integration I - - - - - - - '

'I Test Planning
Integration

Testing
L - - - - - - l

Throwaway
Prototype

Throwaway
Prototype

v
Throwaway
Prototype

swDGw5

Figure 3.5.2-1. Throwaway Prototyping During Requirements Analysis, Preliminary Design, and
Detailed Design

3.5.3 Evolutionary Prototyping Model

In this model, the prototype is constructed to learn more about the problem or its solution.
Once the prototype has been used and the requisite knowledge has been gained, the prototype
is then adapted to satisfy the now better understood requirements. Evolutionary prototypes cannot
be built in a sloppy manner. Because the evolutionary prototype will finally evolve into the
final product, it must demonstrate all the quality, maintainability, and reliability associated
with the final product. Remember,

It is impossible to retrofit quality, maintainability, and reliability. [DAW81

Compromises that can be made while developing an evolutionary prototype are 1) building
only the parts of the system that are well understood, leaving the others to later generations of
the prototype (these parts could be developed from knowledge gained from a throwaway
prototype of the "obscure" module) and 2) lowering the importance of performance (to
paraphrase Dijkstra, it is easier to make a working program faster than make a fast program work).

If necessary, you could build a throwaway prototype during an evolutionary prototyping
process, especially if it clarifies your understanding of the issues you are addressing with the
evolutionary prototype.

Version 1 Hughes STX Proprietary

3- 12 LIFECYCLE PROCESS MODELS Software Engineering Guidebook

Figure 3.5.3-1 represents the model for an evolutionary prototype.

Prototype Release n

Requirements System
Analysis Testing

Preliminary Integration
Design Testing

Detailed Coding &
Design UnitTesting

w

Figure 3.5.3-1. The Evolutionary Prototype Model

3.5.4 Throwaway Prototyping vs. Evolutionary Prototyping

Table 3.5.41 compares the throwaway prototype with the evolutionary prototype:

Table 3.5.4-1. Throwaway Prototype vs. Evolutionary Prototype

Throwaway Evolutionary Prototype Prototype

Quick and dirty, no Structured, rigorous
rigor

Build only difficult Build only understood
parts parts first, build on solid

Optimized develop- Optimized modifiability
ment time

Learn from it and Learn from it and
throw if away evolve it

foundation

Development
Guidelines

WhatTo Build

Design
Drivers

Ultimate Goals

[DAV88]
3.5.5 Types of Prototypes

Table 3.5.5-1 compares the various reasons a prototype may be built (i.e., to demonstrate proof
of concept of performance, to demonstrate proof of HMI concepts, for rapid implementation,
or for [or to demonstrate] initial operational capability), with consideration given to

Version I Hughes STX Proprietary

Software Engineering Guidebook LIFECYCLE PROCESS MODELS 3- 13

requirements, documentation, validation, management visibility, acceptance, delivery, team
size, and cost.

Table 3.5.5-1. Comparison of Prototypes

I Proof of Concept or
Performance I ProofofHMI Concepts I Rapid Implementation Initial Operational Capability

Characteristic
Requirements

Formal with reviews White Paper Informal Iterative

Documentation Notes only Full complement Notes and users manual Notes and display for-
mat

Validation By analysis Formal, with plans and proce Complete but informal User inspection
dures

Management I Informal status I Informal status I Few milestones, informal Welldefined milestones and I Visibility

Acceptance Engineering evalua-
tion

Formal, with customer buyoff Experimental observations Demonstration

Delivery
Mediudarge Small SmalVmedium Small Team Size

To customer To customer Input for requirements Throwaway

cost Full Development Reduced Development Small Small

Type of Prototype Evolutionary Throwaway Throwaway Throwaway

3.6 Selecting a Model

A model should be selected based on the needs of the contract and the task. This usually
occurs in the proposal stage before the contract is awarded or at the very beginning of the
contract or task. The selection of the model depends on the analysis of the requirements and
other contractual constraints and issues. A model is selected to oversee the development of an
engineered product and to help engineers and project managers control the development of
the product.

In our work, by the time a contract is issued, the model has usually already been selected. If
the required task is to define requirements; design, code, and test the software; and deliver the
product, we usually select the waterfall model. When requirements are unclear and volatile,
we use the evolutionary prototyping model. If operational capability is required in a short
period of time for a system with well-defined requirements, we choose the incremental
development model. If the task is maintaining existing software, the same software
development processes apply, although in smaller pieces (as changes, whether as Engineering
Change Requests, Change Orders, or Task Orders). There is usually not enough time to
perform a risk analysis to determine whether the system objectives are likely to satisfy user
needs.

The theory behind the spiral model is that a program can proceed in steps, with each step
leading to well-analyzed decisions for the next step. In the overall field of software
development, where up to 50% of software projects are said to lead to no usable products, the
spiral model is useful in promoting reasoned analysis during the life of the project. For
example, if the risk analysis conducted after the definition of software requirements showed
that the system was not feasible, the requirements can be scaled back, or the entire project can
be modified before large amounts of resources are wasted.

The spiral model is particularly well suited to internal company projects, where such decision
points can exist. In some cases, Government systems are developed in phases, with separate
contracts for feasibility studies, design competitions, demonstrations, and full-scale

Version 1 Hughes STX Proprietary

3- 14 LIFECYCLE PROCESS MODELS Software Engineering Guidebook

development. When a task includes the flexibility required to implement it, the spiral model is
a good choice. It encourages evaluation of alternatives and incremental planning.

Note: A spiral model cannot be used effectively if the objectives, constraints, or plans cannot be
changed.

Any model can be applied to a small part of any job. For example, an individual change
request could be handled in accordance with any model. A simple change could be '

implemented using the waterfall model. A complicated change could be handled by defining
objectives, evaluating alternatives, analyzing risk and identifylng contingencies, producing a
plan, and developing the product (which would then consist of revised code and
documentation); this calls for the basic spiral model. The product could be delivered in
increments, which would make the evolutionary spiral model apply.

Table 3.6-1 compares the waterfall, spiral, incremental development, and evolutionary
prototyping models.

Table 3.6-1. A Comparison of Lifecycle Process Models

Waterfall

Spiral

Incremental
Development

Evolutionary
Prototyping

Characteristics

Disciplined and sequential
approach
Requirements need to be
known at the start
Document driven

Risk reduction at every step
Flexible, iterative process
Supports evolving system
needs

~ ~~

9 Early (initial) operational
capability
Software designed to
facilitate growth
Partial capability, with
additional capability provided
in subsequent builds

Builds the difficult parts
Provides increasing
capability with each release
Software built to learn from,
and then evolved

Advantages
~~~ ~ 

Simple  model 
Well-defined  steps 

Risks  addressed,  evaluated, 
and  reduced at every  step 

Early  availability of initial 
operational  capability 
Software  designed to be 
extensible 
Problems  addressed  with 
each  build 
Allows  tradeoffs  between 
functionality  and  performance 
between  builds 

Software  designed to be 

Problems  addressed  with 
extensible 

each  release 

Disadvantages 

Big  commitment  required  up 
front 
User  problems  identified  late 

Difficult to implement  for  contract 
software 
Difficult to schedule 
Difficult to decide  on  the  "number 
of  turns  of  the  spiral" 

Difficult to manage  the 
development,  testing,  and 
release  of  the  builds 

[ISD481 

I Difficult to decide  which 
requirements  should  be 
addressed  with  each  release 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook LIFEC~CLE PROCESS MODELS 3- 15 

3.7 Cited References 

[SlZX?] Sitaram, Pradip, “A Concurrent Process  Model  for Software Development,” 
Thesis, 1988. 

[DAV881 Davis, E. Bersoff, and E. Comer,  “A Strategy for Comparing Alternative 
Software Development Life Cycle  Models,” IEEE Transactions on Software 
Engineering, 24,20, October 1988. 

[ISD48] Software  Engineering  Handbook,  Build 3, Division 48, Information System 
Division, Hughes Aircraft Company, March 1992, p. 2-11. 

[ED481 Software Enginem’ng Handbook,  Build 3, pp. 2-4-2-6. 

[IS0481 Software Enginem‘ng Handbook,  Build 3, pp. 2-&2-8. 

[SEL-81-305] Recommended  Approach to Software Dmelopment, Rev. 3, Software Engineering 
Laboratory  Series, SEL-81-305, N A S A  Goddard Space Flight Center, June 1992. 

[DAVSOI Davis, A.,Softmre Requirements: Analysis and Specification, Englewood Cliffs, 
New Jersey:  Prentice-Hall, 1990, p. 343. 

[DAV881 Davis, p. 343. 

[DAV88] Davis, p. 347. 

[DAV881 Davis,  p. 346. 
iDAV881 Davis,  p.  354. 

[ISD481 Software  Engineering  Handbook,  Build 3, pp. 2-10-2-11. 

[ROY701 Royce, W., “Managing the Development of Large Software Systems,” 
Proceedings of IEEE WESCON, 1970, p. 1-9. 

Version 1 Hughes STX Proprietary 



Section 4 

Software 
Development 

Activities 

Version 1 Software  Engineering  Guidebook  Hughes STX Proprietary 



Software  Engineering  Guidebook SOFIWARE DEVELoPMErVr ACTIVITIES 4-iii 

Contents 

4.1 Requirements  Analysis  Phase .......................................................... 4.1-1 

4.2 Preliminary  Design  Phase ................................................................. 4.2-1 
4.3 Detailed  Design  Phase ....................................................................... 4.3-1 
4.4 Coding and Unit  Test  Phase ............................................................. 4.4-1 
4.5 Integration and Testing  Phase .......................................................... 4.5-1 
4.6 Systems  Testing  Phase ....................................................................... 4.6-1 

4.7 Acceptance  Testing  Phase ................................................................. 4.7-1 
4.8 Operations and Maintenance  Phase ................................................ 4.8-1 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook SOWARE DEVEL~PME~V~ A ~ E S  

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook S O ~ A R E  DEVELOPMEIWACTWITES 4- 1 

Software development is one of the three major activities performed in the software lifecycle; 
the other two  are software project management and software support (i.e., Configuration 
Management [CM] and Quality Assurance [QA]). In concert with the other two activities, 
software development is  an ongoing activity throughout the lifecycle; it proceeds through  the 
following phases: 

Requirements Analysis Phase-Section  4.1 

Preliminary Design Phase-Section 4.2 

Detailed Design Phase-Section 4.3 

Coding and Unit  Test  Phase-Section  4.4 

Integration and Testing  Phase-Section  4.5 

System Testing Phase-Section  4.6 

Acceptance  Testing Phase-Section 4.7 

Operations  and Maintenance Phase-Section 4.8 

Each section contains a description of all the activities performed during that phase; 
descriptions of deliverables, documentation, and reviews; and checklists, sample tables of 
contents for documentation, and references for further information. 

The facing page is a photo-reduced copy of Figure 2.2-1 (Software Development Process-An 
Integrated View) presented in Section 2. Each subsection in Section  4  (i.e.,  4.1-4.8) begins with 
a “zoomed in” view of its respective phase as illustrated in this figure. 

Version 1 Hughes STX Proprietary 



Section 4.1 

Requirements Andysis 
Phase 

Contents 

4.1.1 
4.1.2 
4.1.3 
4.1.4 
4.1.5 
4.l.6 
4.1.7 
4.1.8 
4.1.9 

Introduction .................................................. .4. 1.1 

General  Methodology  for  Developing  Software  Requirements ...... .4. 1.1 
Organizing a  Software  Requirements  Specification ................ .4. 1.4 

Summary .................................................... .4. 1-7 
Tailoring to a  Small  Project ..................................... .4. 1.8 
Suggested  Reference  Material .................................. .4. 1-9 

Appendixes .................................................. 4.1-10 

4.1.9.2 Sample Tables of Contents for SRS ...................... .4. 1.14 
4.1.9.3 Formal  Analysis  Techniques ........................... .4. 1-20 

Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1- 6 

Cited  References .............................................. .4. 1-9 

4.1.9.1 Checklists ........................................... .4. 1-10 

Version 1 Software  Engineering  Guidebook  Hughes STX Proprietary 



Software Engineering Guidebook REQUIREMENT3 ANALYSIS PHASE 

. 

\ '  
\ '  
\ '\ 
\ ' 
\ ' 
\ ' 
\ 

' 
\ 

' 
\ 

' ' 
\ ' 
\ 

' 
\ 

' ' 
\ ' 
\ \ 

\ 
' 

\ 
' 

\ 

\ 
\ 
\ 

\ 

\ 
\ 

\ 
\ 

\ 

\ 
\ 

\ 

\ 

\ 

\ 
\ 

\ 

\ 

\ 

\ 
1 

0 
0 

0 
0 

. 
c 
c 

' ' ' ' 

L 

\ 

\ 
\ 

\ 
\ 

\ 
\ 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook REQUIREMENTS hNLYSlS PHASE 4.1 - 1 

4.1.1 Introduction 

A complete,  concise  description of the external  behavior of the  software  system,  including its 
interfaces to its environment, other software  systems,  communications  ports,  hardware, and 
users  is  developed during this phase of software development. This  description  is  recorded  in 
a  document  called  the  Software  Requirements  Specification  (SRS). To analyze and specify the 
software  requirements,  software developers must first analyze  the current system  (automated 
or nonautomated) and the problem(s)  being addressed. The  information  required  to  perform 
this analysis is obtained  from the Statement of  Work  (SOW), operations concepts  documents, 
and systems  requirements.  Additionally,  vital  information and insight should  be  obtained 
from  interviews  with  users and customers. 

In  most HSTX projects, our software engineering staff is responsible  for  developing  the SRS. 
However, if there is a  well-defined  systems engineering organization  for  the  project,  systems 
engineering  personnel  may develop software  requirements  from the system  specification, 
operational concept  documents, and other analyses documents. It must be  noted that no 
matter  who  produces the SRS, it must be complete,  unambiguous, and understood by all 
related  organizations  within HSTX and the customer.  The SRS is the project  manager’s  key 
tool  for  controlling the scope of the  software development effort. 

The SRS that is produced during this phase is the communication  tool  between  the  developer 
and the customer.  It  shows the customer that the developers understand what the customer 
wants. The SRS then serves as a  management  tool and is used  to  establish  baseline 
requirements, allowing managers and developers to  control  changes  by  monitoring  cost and 
schedule  impacts. 

Figure 4.1.1-1 presents  a  graphical  representation of the various  activities  associated  with the 
requirements  analysis phase of software development. [ISD48] 

4.1.2 General  Methodology  for  Developing  Software  Requirements 

Various steps are involved in specifying  software  requirements.  Some of the  following steps 
may  not apply to your particular  project. You can  tailor this process  to  best suit your projecfs 
needs. 

1. Allocate the requirements that have been  specified in the  system  specification,  operational 
concept  document,  customer  Request  for  Proposal (RFP), HSTX proposal, or contract 
decision  agreements  to the software  system’s  requirements.  This  should  be done formally 
because it will establish  the  basis  for future testing. 

2. Allocate  all the system’s inputs and outputs to the software  system(s1. A system input  or 
output is one that is  visible  from outside the system.  That  is, it is not an internal flow 
between  software  systems  or within software  subsystems.  It  is an item that  could  be  tested 
for, during the  formal  testing, and it relates  to an existing  requirement on the system. 

Note: Because  each software system will have its own SRS (and  possibly  an lnterface Requirements  Specification [IRS]), the 
remaining steps in this methodology are  applied to each software system. 

3. Develop an initial software design concept to identify the functions of the software  system (if 
required). Generally, SRS’s are organized by function. Note that at this stage  a  function is 
not  actually  a  design  element  (because  no  software  design  phase has occurred), but it 
often assumes that identity during the later  stages of development.  Develop  function 
definitions that make  sense in terms of software design. Try  to  minimize  the data flow 

Version 1 Hughes STX Proprietary 



4.1-2 REQUIREMENIS ANALYSIS PHASE Software Engineering Guidebook 

4. 

5. 

6. 

7. 

-.. , * . I ..* Identify and * * r  Analyze Problem(s) 

Customen t+ on Current  and 
and Users New System 

In$NhW Gather information J' 

\ Deternine Fsrrlbllhy 
Explore  design options 
Perform tradeoff  studies 

Allorate and Dalna Requlramsn8 
(put in writinp.  using %hall...*) 

Software functions 
Define all 

Inputs and outputs 
DFDs. DO diagrams, etc. 

External interfaces 
Data accuracy  and  precision 
Resources 
Algorithms 

*Test requirements 

Error condilions 

I I 

Classify and Annotns I R e v i e w s  With 

Relative to necessity 6 , J ~ m e r ~ s e r s  1 
Essential 
Desirable 
Optional Correctness 

Relative to stabilii Unambiguity 
volatile 
Requires review 

9 Information only 

Figure 4.1.1-1. Requirements Phase  Process Flow 

among  functions and to  keep  them  cohesive. If data flow diagrams are used in analyzing 
system  requirements,  their  topology  can  help  identify  functions. 

Allocate  requirements,  inputs, and outputs to  functions.  At this point,  there is no  need  to 
"connect  the  functions"  with data flows  internal to the  software  system.  There  is  often 
pressure to  fabricate  those  internal  connections, but the  large  scope of that  job will obscure 
the  need  to  refine  system  requirements into real  software  requirements.  The  internal data 
flows  will be constructed in Step 8. 

For  each input to the software  system,  define the processing  requirements.  Describe what 
the  software  system is required  to do with that input. This step involves  analyzing  all 
requirements  dealing with that input. Notice that the  question  here is 'What?",  not 
"How?". 

For each output from the software  system,  define  the  processing  requirements.  Describe 
what the  software  system  is  required  to  do  to  produce  that output. Again, the question is 
'What?",  not  "How?". 

Connect  the inputs to the software  system and outputs from  the  software  system. If any 
input does  not  relate  to an output, determine  why  that input exists. If any output does  not 
relate  to an input,  determine  how  the output was  produced.  These  connections  can be 
made  using data flow  diagrams,  operational  flow  diagrams,  minispecifications,  or  other 
techniques. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook REQUIREMENIS ANALYSIS PHASE 4.1-3 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Connect the software system’s functions with  the  data flows after all the software system’s 
requirements, inputs, and  outputs have been identified and  understood. A consistent and 
complete SRS should  have each input to the  software system traceable in some form 
through the functions to an  output from the software system, and vice  versa. 

Produce the detailed requirements. Decompose each requirement into a set of necessary 
and sufficiently detailed requirements. The goal is to produce a set of requirements that 
adequately and fully define the required processing of the software system. The SRS 
should specify everything the software system must  do (the  software system need not do 
anything  that  the SRS does not specify). The crucial factor here is to include only the 
requirements, not the design (i.e., include only “what,” not “how“). See Section 4.1.9.1, SRS 
Checklist, for a further discussion of this point. 

Determine whether any other requirements need to be added. The following is a list of 
some ”nonfunctional” requirements areas to consider: 

a. Interfaces g. Constraints (design, environmental, budget) 

b. Security h. Quality Factors 

c. Adaptation i. Human Engineering 

d. Performance j. Traceability 

e.  Resource Utilization k. Qualification 

f. Safety 1. Preparation for Delivery 

”Resource utilization” consists of any requirements for CPU utilization, throughput, 
storage, response time, communication bandwidth, and peripheral device usage. 
Remember to include  only real requirements, not desires or estimates. 

Tailor  a requirements evaluation checklist (see Section 4.1.9.1 for  a sample) and conduct 
an internal review of the requirements. The review should  include a search for any of the 
”potentially bad words”; words such as ”usually,”  “approximately,”  “clearly,” and easily” 
can indicate requirements problems.  Resolve any  pending problems or items mentioned 
as “TBDs.“ Keep in mind that the requirements must be testable. 

Document the requirements for each software system in  an SRS and  an IRS. A format for 
the SRS can be selected and tailored from the samples given in Section 4.1.9.2. Where 
applicable, the SRS should include a table that  maps  the software requirements back to the 
system specification (for traceability). When approved, the SRS and IRS establish the 
allocated baseline. 

Review and  update the Software Development Plan (SDP) (see Section 5.2) as needed. If 
required, submit  this  document to the customer for  review. 

Conduct an Software Specification  Review (SSR) (see Section 4.1.4.2). This is generally a 
formal review with  the customer, focusing on completeness, consistency,  clarity, and 
feasibility. Some projects may conduct more than  one SSR, with different software systems 
reviewed at different SSRs. There are at least two  situations  that  might  warrant  multiple 
SSRs. First, if requirements analysis progresses at different rates for different software 
systems, holding a single SSR might delay design work on those software systems that  are 
ready to proceed early.  Second, some software systems (or parts of software systems) 
might be designated ”critical, meaning they can affect human safety or  are a vital basis to 

Version 1 Hughes STX Proprietary 



4.1-4 REQUIREMEMS A N ~ Y S I S  PHASE Software  Engineering  Guidebook 

the  rest of the  software.  Those  critical  software  systems  might warrant an early SSR. In 
any  case, an entire  software  system should be  reviewed  as  a  whole.  Dividing  a  software 
system  between  two SSRs can  make it easy  to  leave  the  most  difficult parts vague. 

15. As the result of the SSR (possibly  after  completion of action  items),  obtain the customer’s 
signature approval of the SRS/IRS.  The requirements  documents  are then placed under 
formal  configuration  control. 

Other  methodologies  may be used  for  requirements  analysis. Some of the  more  common  are 
structured systems  analysis,  user  software  engineering, and operational  sequence  diagrams. 
The  choice of methodology is determined by the  program. 

4.1.3 Organizing a Software  Requirements  Specification 

Faalitates communication  among the customers, users, analysts, and designers. 

Establishes the basis  for the contractual  agreement and provides a standard against  which 
compliance is measured. 

Clearly  defines  the  required  functionality of the software: the software  must provide all 
required  functions  (functions  that are not required should not be specified). 

Reduces  development costs-only the specified  requirements are designed  for and built. 
Reduces the possibility of rework  by  raising  issues  early in the development  lifecycle. 

Provides the relative  necessity  (essential,  desired,  optional, TBD) and the  relative  volatility 
(confirmed,  changing,  unconfirmed, TBD) of the specified  requirements. 

Provides the basis  for  verifying  compliance by supporting system  testing  activities. 

Provides the foundation and helps  control the evolution of the system. 

Faalitates transfer  and  reuse. The SRS makes  it  easier  to transfer the  knowledge about a 
software product to  new users and machines.  Potential Users can  review the SRS to 
determine how well the system  meets  their needs and also gauge the  software  for 
compliance  to the specified  requirements. 

Note: Software requirements  should not be  confused with user  needs.  It is the  software  developer’s responsibility 
to interpret the user  needs (customers often refer to these  needs as requirements) and translate them  into the 
SRS. 

[ED481 

[LSD481 

A common  excuse  for  not speafymg and documenting  requirements is that ”...the 
requirements will change  anyway, so why  bother  documenting  them ....” Remember, in the 
early  phases of the  lifecycle, the (documented) software  requirements  specijications are the 
requirements. If they  haven’t  been  documented,  there are no  requirements!  Requirements must 
be  documented  from  the  very  beginning  for  the  very  reason  that  they do change:  this  is  the 
best  way  to  control  and  manage  changing  requirements.  The  fact is that  requirements will 
change and evolve.  The  best that we  can do as developers  is to manage and control  their 
evolution. 

[ DAVSO] 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook REQUIREMENIS ANALYSIS PHASE 4.1-5 

A complete, conase description of the entire  external  interface of the  software 
system  with its environment, including other software,  communication  ports, 
hardware, and human  users. This includes two types of requirements: 

- Behavioral  requirements  define what the software  system  does. All the 
functions to  be  performed,  all the inputs and outputs to and from the 
software  system, and information  concerning  how  the inputs and outputs 
will  interrelate  are  described. 

- Nonbehavioral  requirements define the attributes of the software  system as 
it performs its job.  They include a complete  description of the  software 
system’s  required  level of effiaency,  reliability,  security,  maintainability, 
portability,  visibility, capaaty, and standards compliance. 

Project requirements:  staffing,  schedules,  costs,  milestones, 
activities,  phases, and reporting procedures  (these  belong in the 
software  project  management plan) 

Designs (these belong in the design documents) 

Product assurance plans: CM plans, Verification and  Validation 
(V%V) plans,  test  plans, and QA plans 

I I 

Correct-Every requirement  specified  represents  something  that is required of the system to  be  built. 

Unambiguous-Every  requirement  specified  has  only one interpretation. 

Complete-Everything the software is supposed to do is included in the SRS. 

Verifiable-There should be a cost-effective  method  to  check the final  software  system to ensure that  every 
requirement  specified has been  met  (testable). 

Consistent-1)  No two parts of any requirement  should  have  conflicting  terms, 2) no  two  requirements 
should specify the system to exhibit  conflicting  characteristics, and 3) no  two  requirements  should  require the 
system to respond  to  conflicting  timing pattern. 

Understandable by Noncomputer Specialists-It should serve as a communication tool  between  customers 
and  developers. 

Modifiable-Requirements  will  change; the easier  these  changes are to  make the better. 

Traceable-The origin of each  requirement and its dependents is easily  identified. 

Annotated-Guidance for  development is provided to show the  relative  necessity and relative  volatility of 
the  requirements. 

Usable-Most importantly, the requirements  should  be produced in a manner  that  allows  them  to  be used 
and to  be of help to  the  developers. 

F e a s i b l d a n  this system be built? 

Remember, faulty (or unspecified) requirements will lead to errors  in  the system. Errors can be 
costly to the project, especially because errors often remain latent and are undetected until 
well after the  stage in which they were made. The later in the development lifecycle  a software 
error is detected, the more expensive it will be to repair. Typically, errors  made in 
requirements specifications are because of incorrect facts, omissions, inconsistencies, and 

[DAVSOI 

[DAVSOI 

[ DAVSOI 

Version 1 Hughes STX Proprietary 



4.1-6 REQUIREMENIS ANALYSIS P H A ~ E  Software Engineering Guidebook 

ambiguities.  Using  formal  analysis and specification  methods  correctly  can  reduce  the 
incidence of errors in  the  requirements  phase. A careful  review of the SRS for  correctness, 
completeness,  consistency,  and  the  other attributes listed  earlier  can  help  errors  be  detected 
and addressed  before further development  has  occurred. 

Remember, when you feel that a textual or informal description will not suffice and has the possibility 
of being misunderstood, use a formal technique to specify your requirement. 

Data  Flow Diagrams ( D m )  (see Section 4.1.9.3) 

Entity Relationship Diagrams (ERDs) (see Section 4.1.9.3) 

Finite State Machines (FSMs) (see Section 4.1.9.3) 

Statecharts (see Section 4.1.9.3) 

Data Dictionaries 

Decision Tables and Decision Trees 

Object-Oriented Diagrams (OODs) 

Program Design Language (PDL) 

Requirements Engineering Validation  System 

,Requirements Language Processor 

Specification and Description Language 

PAISLey 

Petri Nets 

There  are  many  ways of organizing an SRS. See  Section  4.1.9.2  for sample  tables of contents. 
Any one of these  can  be  modified and used  to suit your particular  project. 

4.1.4 Reviews 

4.1.4.1 Internal  Reviews 

The  software products developed during the software  requirements  phase should be 
reviewed  internally  before  being  delivered to the  customer.  Internal  reviews provide early 
identification of potential  problem areas and ensure that requirements and standards are 
being  met.  Internal  reviews,  also ensure that  the software developers  will  receive  a  complete 
and usable product as the basis  for  their  development. 

Establish  a  checklist  prior  to  the internal review of the software  requirements.  At  a minimum, 
the  checklist should address completeness,  consistency,  feasibility,  testability, and 
understandability.  A sample checklist  for SRR is given  in  Section 4.1.9.1.  The requirements 
review includes a  review of the  requirements  contained in the SRS and the IRS. 

4.1.4.2 Software Specification Review 

The  objective of the SSR is to  review  the  software  requirements,  interface  requirements, and 
the operational  concept.  These  are  reviewed  for  technical  adequacy,  feasibility, and 
compliance with system  requirements.  A  checklist  for  the  review  is  given in Section 4.1.9.1. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook REQUIREMENIS  ANALYSIS PHASE 4.1-7 

The following items should be reviewed during  the SSR for each software system: 

Functional overview of the software system. This should include inputs, processing, and 
outputs of each function. 

Overall software system performance requirements, including those for execution time, 
storage requirements, and similar constraints. 

Control flow and  data flow between each of the software functions that comprise the 
software system. 

All interface requirements between the software system and all other configuration items 
both  internal  and external to the system. 

Qualification requirements that identify applicable levels and methods of testing for the 
software requirements that comprise the software system. 

Any special delivery requirements for the software system. 

Quality factor requirements, i.e., correctness,  reliability,  efficiency, integrity, usability, 
maintainability,  testability,  flexibility,  portability,  reusability, and interoperability. 

Mission requirements of the system and  its associated operational and  support 
environments. 

Functions and characteristics of the computer system within the overall system. 

Milestone schedules (see Section 5.2). 

4.1.5 Summary 

Inputs 

Software  Project Man- 
agement  Activities 

Software  Development 
Activities 

~~~ 

Software Support
Activities

Products

Review

Contractual Documents-SOW, Task Assignment,

SDP.
System Requirements.
Customer and User Interviews.

SDP Review.
Risk Management.
Estimation and Tracking.

Develop SRS.
Develop IRS.
Conduct SSR.

CM-Place SRS under CM.
QA-Review SRS, IRS, and SSR materials.

SRS.
IRS.
SDP-The SDP is completed at this time and will most likely be updated
during later development phases.
Requirements Allocation-System-level requirements are allocated to
functions within software systems.
Resource Allocationxritical resources such as memory and processing
time are allocated to software elements. If the allocation is done using a
model, the model can be considered a product also, since it may be r e
fined in the next phase.

Proposal.

SSR

Version 1 Hughes STX Proprietary

4.1-8 REQUIREMENE ANALYSIS PHASE Software Engineering Guidebook

4.1.6 Tailoring to a Small Project

Each project is unique. Tailoring the information provided in this section is essential in
defining and implementing the requirements analysis function to a specific project. Regardless
of project sue, the requirements analysis function needs to be performed. Only the level of
detail and formality of the process and products vary among projects. Some of the factors to
be considered are:

Xme

Resources

Complexity

0 Contractual commitments

0 Intended use of the product

For small projects where time and resources are very limited, it is impractical to attempt to
provide a complete suite of documentation and evaluate the SRS at a formal review. However,
it is essential to complete at least the following, in writing, before the software is designed:

Briefly describe the objective of the project and include a few statements describing the
external behavior of the software; this will help you to control the scope of development.

List and briefly describe any constraints (standards, hardware limitations, security,
availability of third-party software).

List and briefly describe external interfaces for (all applicable):

- Other software
- User
- Operators
- Communications
Identify, list, and describe the primary functional requirements being addressed by the
system.

Identify and describe the data flows into and out of the system at the context level and
associate the primary data flows to the primary functions. The details provided regarding
data flows can be extended according to the resources available and complexity of the
problem being described.

If applicable, identify and describe the primary operating states of the system and the
events that the system responds to. Again, the details regarding the description of the
states and the events can be extended according to the complexity of the problem being
addressed.

If a user interface is required, determine whether it is hierarchical or menubar-driven and
whether it has pop-up windows. Describe events when windows are displayed and
describe when windows are displayed concurrently. Describe what the windows look
like, what events they respond to, and what they do in response to these events. Note: It is
perfectly acceptable to "design" the user interface during the requirements phase, because
you are describing whuf the interface looks and feels like (not how the interfice accomplishes
its functions). Remember, the user interface is the external interface of the software.

Ensure that the issues you are speclfylng meet the attributes listed in Section 4.1.3.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMEW ANALYSIS W E 4.1-9

Briefly describe your plans (outline your test plan) to test the software after it is built to
confirm that the requirements have been satisfied. Do not specify requirements for which
you cannot prescribe a test to verify compliance.

Again, remember that the objective is to specify What the system will do. It is essential to
obtain the customer’s approval on what you have written-this will serve as a common point
of reference during future development activities. The formal SSR can be replaced by an
informal discussion about the requirements, culminating in agreement between the
developers and the customer on the requirements that will be addressed during the
development process.

4.1.7 Suggested Reference Material

Davis, Alan M., Software Requirements: Analysis and Specification, Prentice Hall, 1990.

Thayer, Richard, and Merlin Dorfman, System and Software Requirements Engineering, IEEE
Computer Press Tutorial, 1990.

Yourdon, Edward, Modem Structured Analysis, Yourdon Press.

Coad, Peter, Object Oriented Analysis, Yourdon Press.

Relevant Standards:

DOD-STD-2168

DOD-STD-2167A

MIL-STD-1521B

DI-MCCR-80025

DI-MCCR-80026

GP 5-0-6 Attachment B

DFI 5-0-53.3 Attachment C

DFI-5-0-53.3 Attachment D

DOD-STD-1703 (NS)

ANSI/IEEE Std 830-1984

4.1.8 Cited References

[ISD48] Software Engineering Handbook, Build 3, Division 48, Information System Division,

[ISD48] Software Engineering Handbook, Build 3, March 1992, pp. 4 3 4 6 .
[IS0481 Software Engineering Handbook, Build 3, March 1992, p. 41.
[DAVSO] Davis, A., Software Requirements: Analysis and Specification, Englewood Cliffs, New

[DAVSO] Davis, p. 183.
[DAVSO] Davis, p. 184.
[DAVSO] Davis, p. 23.

Hughes Aircraft Company, March 1992, p. 42.

Jersey: PrenticeHall, 1990, p. 182.

Version 1 Hughes STX Proprietary

4 . 1 - 10 REQUIREMEWS ANALYSIS PHASE Software Engineering Guidebook

4.1.9 Appendixes

4.1.9.1 Checklists

The checklists provided in this section present a list of most of the issues that may need to be
reviewed. It may not be necessary to address each of the items in the checklist. The goal of
providing these checklists is for you to be aware of all the issues and for you to tailor these
checklists to your project by consciously eliminating the items you do not need.

These checklists can be used to assess the completeness and correctness of software
requirements and the readiness for an SSR. The checklists are used to assess the requirements
themselves, the requirements documents, and the material for a requirements review.

Check

Is all equipment identified (e.g., processors, memories, interface hardware, peripherals)?

Are all requirements required by the SRS and IRS complete?

If there are some TBD requirements, are they scheduled for completion as documented action items?

Is there a data flow diagram (or similar notation) representing the processing sequence of the functional require
ments, if required?

Are all required data flows specified, including sources and destinations?

Are any mathematical equations required as constraints on processing given or referenced?

Are the accuracylprecision requirements defined?

I I Are all required software system inputs and outputs allocated to processing sections?
Are all software functions considered (e.g., loading, prestart tests, startup, modes of operation, operator interac-
tions, normal terminations, restart, abnormal conditions, performance monitoring and tuning, test support features,
recording, adaptation)?

Are the processing requirements specified for recognized error conditions (e.g., hardware faults, 110 errors, com-
putational errors, processing overload, buffer overflow, events failing to occur, out-of-sequence events, incorrect
manual inputs)?

Are communication conventions defined for each external interface (e.g., message headers, identifiers, sequence
numbers, checksums)?

Are all messages on each external interface completely defined (e.g., identification, type, name, description, size,
frequency, direction of transfer, transfer rate, format, data units, data unit attributes)?

I I If an executive is to be developed for this application, are the appropriate requirements specified?

I I Are the resource requirements specified, including spare capacities?

I I Are the test requirements defined (e.g., test levels and provisions to inject test data, adjust parameters, control or
trace the execution of test runs, and extract test results)?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMENTS ANALYSIS PHASE 4.1 - 1 1

I YIN I Check I
I I Is each objectlfunction referred to by one unique name? I
I I Is each objectlfunction defined by one set of characteristics that are not in conflict with one another? I
I I Are the requirements free of logical conflicts? I
I I Are the requirements free of timing conflicts? I
I I Is each requirement specified only once? I
I I Are all data and messages specified only once? I
I I Are acronyms and abbreviations defined and used consistently? I

Are mathematical equations defined consistently?

Are the data flows consistent with the specified inputs and outputs of the requirement paragraphs?

Are data flow notations used consistently?

Are the order and frequency of messages consistent with the specified processing sequences and response times?

Are the message data attributes consistent with the inputs and outputs of relevant requirement paragraphs?

Are the loads used to allocate resource budgets consistently specified for all functions?

I YIN 1 Check I
Do the data expected from external sources exist there?

Are the data expected by outside destinations available?

Are the data sent to outside destinations expected there?

Are the requirements achievable with available technology?

I I Are the necessary implementation tools available? I
On the basis of available facts or modeling information, are the performance requirements realistic (e.g., response
times, accuracies, processing capacities)?

Are the resource budgets realistic (e.g., CPU time, 110 utilization, memory, worst-case loads, data storage)?

I I Has a specific system load been decided as the basis for performance tests? I

t If a general-purpose executive is to be used, is it identified and factored into the performance requirements and re-
source budgets?

Is the scope of requirements consistent with software estimates, schedules, and support facility plans?

Version 1 Hughes STX Proprietary

4.1 - 12 REQUIREMENIS ANALYSIS PHASE Software Engineering Guidebook

YIN Check

Are all requirements specified against the software (i.e., not against the hardware or the operator)?

I I Can all requirements be verified by some (implicit, explicit, analytical, or empirical) means? I
Can test procedures be written against all requirements, using existing or planned resources?

Can the test results be evaluated against predetermined acceptance criteria?

YA Check

Are the major software functions described in relation to system operation?

Are the requirements clearly sited?

Do the requirements have unique interpretations?

I I Is the terminology understandable and consistent? I
I I Is all notation defined? I
I I Is the glossary adequate? I

Are the data flow naming conventions defined?

Is each requirement checked for clarity using the "potentially bad word list" in DFI 6-0-0.2, Attachment A?

I I Do& the SRS adhere to the required format (e.g., GP !j-Q-6 Attachment 8) or contract Data Item Description (DID)?
Is it internally consistent?

Is it consistent with IRSs and higher level specifications?

Will the customer be able to use this document to understand and train others in understanding the software r e
quirements?

Is the document ready to be delivered to the customer?

Was it developed in accordance with the SDP, the software CM plan, and the software QA plan?

Is the document consistent with the operational concept document?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMENT^ ANALYSIS FWASE 4 . 1 - 1 3

I I Does the IRS adhere to the required format (e.g., contract DID)?

1 IS it internally consistent?
I I Is it consistent with other IRSs, the SRS, and higher level specifications?

Will the customer be able to use this document to understand and train others in understanding the interface re-
quirements?

Is the document ready to be delivered to the customer?

Was it developed in accordance with GP 5-0-6 and Information Systems Division Instruction Dl 5 - 0 4 , SDP, the soft-
ware cm plan, and the software QA plan?

Is the document consistent with the operational concept document?

Has MIL-STD-1521 (or other contract requirement) been reviewed to ensure that all required information is corn
plete and available?

Are the requirements ready to be presented at the SSR?

I I Has the form of information presentation been established? I
I I Are the viewgraphs dated and numbered? I

Is the SSR plan complete in terms of agenda, facilities, handouts, recording of minutes, action items, and follow-up?

Have success criteria been agreed upon with the customer?

Version 1 Hughes STX Proprietary

4.1 - 14 REQUIREMENIS ANALYSIS PHASE Software Engineering Guidebook

4.1.9.2 Sample Tables of Contents for SRS

1.0 Scope
1.1 Identification
1.2 Software System Overview
1.3 Document Overview

2.1 Government Documents
2.2 Non-Government Documents

3.0 Engineering Requirements (for a software system)
3.1 Software System External Interface Requirements
3.2 Software System Capabilii Requirements

3.3 Software System Internal Interfaces
3.4 Software System Data Element Requirements
3.5 Adaptation Requirements

3.5.1 Installation-Dependent Data
3.52 Operational Parameters

2.0 Applicable Documents

32.x Capability x

3.6 Sizing and Timing Requirements
3.7 Safety Requirements
3.8 Security Requirements
3.9 Design Constraints
3.10 Software Q u a l i Factors
3.1 1 Human Performancehuman Engineering Factors

3.1 1.1 Human Information Processing
3.1 1 2 Foreseeable Human Errors

.. 3.1 1.3 Total System Implications (e.g., training support, operational environment)
3.12 Requirements Traceability

4.1 Methods (demonstrations vs. test vs. analysis vs. inspection)
4.2 Special (e.g., facilities, formulas, tools)

4.0 Qualification requirements

5.0 Preparation for Delivery
6.0 Notes (e.g., glossary, formula derivations, abbreviations, background information)

1 .O Introduction
1.1 Identification

1.3 Purpose
1.4 Organization
1.5 Objectives

2.1 Reference
2 2 Information
2.3 Parent Documents

1.2 scope

2.0 Applicable Documents

3.0 User Scenarios
4.0 Requirements

4.1 Functional and Performance Requirements

4.2 Timing and Sizing Requirements
4.3 Design Standards and Constraints
4.4 Interface Requirements
4.5 Programming Requirements
4.6 Adaptation Requirements

4.1.x Function x

4.6.1 System Environment
4.6.2 System Parameters
4.6.3 System Capacities

4.7 Database Requirements

5.0

6.0
7.0
8.0
9.0

4.8 Q u a l i Factors
4.8.1 Correctness
4.8.2 Reliability
4.8.3 Efficiency
4.8.4 Integrity
4.8.5 Usability
4.8.6 Maintainability
4.8.7 Testability
4.8.8 Flexibility
4.8.9 Portability
4.8.10 Reusability
4.8.1 1 lnteroperability
4.8.12 Additional Factors

Qualification Requirements
5.1 Qualification Methods
5.2 Qualification Levels
5.3 Acceptance Tolerance
5.4 Tools/Facilities
5.5 Special Qualification Requirements
Preparation for Delivery
Notes
Appendixes
Glossary

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMEW ANALYSIS PHASE 4.1 - 15

3.0 Specific Requirements
3 :l

3.2

3.3
3.4

3.5

3.6

Functional Requirements
3.1.1 Functional Requirement 1

3.1.1.1 Introduction
3.1.1.2 Inputs
3.1.1.3 Processing
3.1.1.4 Outputs

3.1.2 Functional Requirement 2

3.l.n Functional Requirement n

External interface requirements
3.2.1 User Interfaces
3.2.2 Hardware Interfaces
3.2.3 Software Interfaces
3.2.4 Communications Interfaces
Performance Requirements
Design Constraints
3.4.1 Standards Compliance
3.4.2 Hardware Limitations

Attributes
3.5.1 Availability
3.5.2 Security
3.5.3 Maintainability
3.5.4 Transferability/ConveIsion

Other Requirements
3.6.1 Database
3.6.2 Operations
3.6.3 Site Adaptation

...

...

...

...

Version 1 Hughes STX Proprietary

4.1 - 16 REQUIREMENE ANALYSIS PHASE Software Engineering Guidebook

3.0 Specific Reauirements
3.1

3.2
3.3
3.4

3.5

Funckonal Requirements
3.1.1 Functional Requirement 1

3.1 .I .1 Specification
3.1.1.1 .I Introduction
3.1.1.1.2 Inputs
3.1 .I .1.3 Processing
3.1.1 .I .4 Outputs
3.1.1.2 External Interfaces
3.1 .I .2.1 User Interfaces
3.1.1.2.2 Hardware Interfaces
3.1.1.2.3 Software Interfaces
3.1.1.2.4 Communication

Interfaces
3.1.2 Functional Requirement 2

3.l.n Functional Requirement n

Performance Requirements
Design Constraints
Attributes
3.4.1 Availability
3.4.2 Security
3.4.3 Maintainability
3.4.4 Transferability/Conversion

Other Requirements
3.5.1 Database
3.5.2 Operations
3.5.3 Site Adaptation

...

...

...

.O Specific Requirements
3.1 Functional requirements

3.1.1 Functional Requirement 1
3.1.1 .I Introduction
3.1 .I .2 Inputs
3.1 .I .3 Processing
3.1.1.4 Outputs
3.1.1.5 Performance Requirements
3.1.1.6 Design Constraints

3.1.1.6.1 Standards
Compliance

3.1 .I .6.2 Hardware
Limitations

3.1.1.7 Attributes
...
3.1 .I .7.1 Availability
3.1.1.7.2 Security
3.1.1.7.3 Maintainability
3.1.1.7.4 Transferability/

Conversion
...

3.1 .I .8 Other requirements
3.1 .I .8.1 Database
3.1 .I .8.2 Operations
3.1.1.8.3 Site Adaptation

3.1.2 Functional Requirement 2

3.1 .n Functional Requirement n

...
...

...
3.2 External Interface Requirements

3.2.1 User Interfaces
3.2.1 .I Performance Requirements
3.2.1.2 Design Constraints

3.2.1.2.1 Standards
Compliance

3.2.1.2.2 Hardware
Limitations

...
3.2.1.3 Attributes

3.2.1.3.1 Availability
3.2.1.3.2 Security
3.2.1.3.3 Maintainability
3.2.1.3.4 Transferability/

Conversion

3.2.1.4 Other Requirements
...

3.2.1.4.1 Database
3.2.1.4.2 Operations
3.2.1.4.3 Site Adaptation

3.2.2 Hardware Interfaces

3.2.3 Software Interfaces

3.2.4 Communications Interfaces

.. .

...

...

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMENT^ ANALYSIS MSE 4.1 - 17

3.0 Specific Requirements
3.1 Functional Requirement 1

3.1.1 Introduction
3.1.2 Inputs
3.1.3 Processing
3.1.4 Outputs
3.1.5 External Interfaces

3.1.5.1 User Interfaces
3.1 5.2 Hardware Interfaces
3.1 5.3 Software Interfaces
3.1 5.4 Communications Interfaces

3.1.6 Performance Requirements
3.1.7 Design Constraints

3.1.7.1 Standards Compliance
3.1.7.2 Hardware Limitations

3.1.8 Attributes
...
3.1.8.1 Availability
3.1.8.2 Security
3.1.8.3 Maintainability
3.1.8.4 TmsferabilitylConversion

3.1.9 Other Requirements
...
3.1.9.1 Database
3.1.9.2 Operations
3.1.9.3 Site Adaptation

3.2 Functional Requirement 2
...

...
3.n Functional Requirement n

Version 1 Hughes STX Proprietary

4.1 - 18 REQUIREMENIS ANALYSIS PHASE Software Engineering Guidebook

1 .o

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

Product Overview and Summary

Environments
2.1 Development
2.2 Operations
2.3 Maintenance

External Interfaces and Data Flow
3.1 User Displays and Report Formats
3.2 User Command Summary
3.3 High-Level Data Flow Diagrams
3.4 Logical Data Sources and Sinks
3.5 Logical Data Stores
3.6 Logical Data Dictionary

Functional Specifications

Performance Requirements

Exception Conditions and Exception Handling

Early Subsets and Implementation Priorities

Foreseeable Modifications and Enhancements

Acceptable Criteria
9.1 Functional and Performance Tests
9.2 Documentation Standards

Design Guidelines (hints and constraints)

Sources of information

Glossary of Terms

Version 1 Hughes STX Proprietary

S o h e Engineering Guidebook REQUIREMEWE ANALYSIS PHASE 4.1 - 19

1 .O Introduction
1 .I Product Overview and Rationale
1.2 Terminology and Basic Features
1.3 Summary of Display and Report Formats
1.4 Outline of the Manual

2.0 Getting Started
2.1 Signon
2.2 Help Mode
2.3 Sample Run

3.0 Modes of Operation
3.1 Commands
3.2 Dialogs
3.3 Features

4.0 Advanced Features
5.0 Command Syntax and System Options
6.0 Index

1.0 scope
1 .I Identification
1.2 System Overview
1.3 Document Overview

2.0 Applicable Documents
2.1 Specifications
2.2 Standards
2.3 Drawings
2.4 Other Publications

3.0 Interface Specification
3.x Interface Name

3.x.1 Interface Requirements
a) Whether interfacing software systems are to execute concurrently or sequentially. If concurrently, the

b) Communication protocol to be used for the interface
c) Priority Level of the Interface
3.x.2 Data requirements

method of synchronization to be used

For each data element:
A Project-unique identifier for the data element
A brief description of the data element
The software system, hardware item, or other critical item that is the source of the data element
The software system, hardware item, or other critical item that is the users of the data element
Units of measure required for the data element (e.g., seconds, meters, kilohertz, etc.)
The limitlrange of values required for each data element (for constants provide the actual value)
The accuracy required for the data element
The precision required for the data element in terms of digits

4.0 Notes
5.0 Appendixes

Version 1 Hughes STX Proprietary

4.1-20 REQUIREMENTS ANALYSIS PHASE Software Engineering Guidebook

process

label

Data sourcdsink
name label

Data flow label -
Data store name

label

A process that acts upon the
data that are passed (flow) into it

A data source or data destination
(terminators)

I

Represents the data and the
direction they flow in

I A data store

’ I

A signal

1.

2.

3.

4.

5.

All names used in the Data Flow Diagram (DFD) should be
unique. Using unique names makes it easier to refer to items in
the DFD.

Meaningful names should be used to label the processes and
data f l o w s 4 0 NOT use names like “process data” to label a
process or “data” to label a data flow. Remember, you should
be able to look at a data flow and understand the relationship
between the data and the processes in your system.

Arrows in.a DFD represent the flow of data; remember, a DFD is
NOT a flow chart and therefore does not present the relative
order/seQuence of events.

You cannot represent logical decisions in a DFD. (Drawing a
diamond-shaped box with conditional arrows emerging from it
implies an ordering of events that does not make sense in a
data flow.)

The DFD should be developed from the top down; it., begin
with the data flows into and out of the entire system (treat the
system as a process), then define the system as a set of “lower
level” processes with the data flows between them and
progressively decompose the processes until they can be
comfortably described in a process specification.

sum z

question &

question & response

location of
requestor answer

search 1 I answer

Encyclopedia

instructions

SWDG020

DFDs are used to describe the flow of data through a system. The
system is represented as a set of processes connected by the data
associated with those processes. DFDs are used to describe the
system at various levels of abstraction.

Advantages

Ideal for describing the transformation of data as they flow

* Simple notation makes it easy to understand.
The system can be represented in increasing levels of detail
with each progressive level in the hierarchy.

through the system. ,
Disadvantages

The order of processing cannot be implied or represented.
Concurrency cannot be shown easily.
It is easy to show too much detail-remember to stop when
the process is easily understood.

SWDGOZO

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMENTS ANALYSIS PHASE 4.1-2 1

State name
label
I

0

3-a

\state (mode of behavior) of the
nachine.

I(: stimulus (input)
1: output

Mealy machine: The output is
associated to the stimulus or
input.

X: State X
Y: State Y
i: input
0: output

Moore machine: The output is
associated to the current state
(not the transition).

X: State X
Y: State Y
i: input
0: output

I.

2 .

3.

4.

5.

6.

7.

Finite State Machines (FSMs) are also known as State
Transition Diagrams (STDs).

An FSM is a hypothetical machine that can be in only ONE of a
given number of states at a specific time.

All names used in the FSM should be unique, which makes it
easier to refer to items in the FSM.

Meaningful names should be used to label the states and
stimuli-DO NOT use names like "running process" to label a
state or "signal" to label a stimulus. Remember, you should be
able to look at an FSM and recognize the relationship between
the states and the stimuli to understand the behavior of your
system.

Arrows in an FSM represent the stimulus to the system;
remember, an FSM is NOT a DFD.

The FSM responds to a stimulus (input) by generating an
output and changing the state it is in. The output and the next
state are functions of the current state and the input.

There are two types of FSM: the Moore machine and the Mealy
machine (see alongside); our examples show the Mealy
machine.

switch onlbulb lights up

light off providing light

switch offhurn bulb out

This FSM represents a light bulb. The angled (unlabeled) arrow points to
the 'light off" state; this is the "default entry state" of our hypothetical
light bulb. When this machine receives a stimulus of "switch On," the
"bulb lights up" as an "output" and the machine transitions to the
'providing light" state. The machine will return to the "light off" state is
when it receives a stimulus of "switch off" (while in the "providing light"
state); it does so by turning the bulb out.

Possible Applications
Simple user interfaces

Parsers

Control systems

Interprocess communication protocols

Rdvantages
FSMs are very useful in representing the behavior of a
system when reacting to external stimuli.

Unambiguous representation leaves little possibility of
misleading the reader.

FSMs use simple notation and are easy to understand.

lisadvantages
FSMs can be in only ONE of a given number of StateS-every
state has an "OR" relationship with every other state in the
machine. Therefore, it is impossible to represent a machine
that exists concurrently in another state.

FSMs can become complex intertwined diagrams because
the states cannot be "decomposed."

Conditional state transitions are not possible.

(State charts were developed to overcome many of the restrictions
olaced upon "traditional" STDs.)

SWOGM2

Version 1 Hughes STX Proprietary

4.1-22 REQUIREMENIS ANALYSIS PHASE Software Engineering Guidebook

State name
label

I -
1

k [State Q]

p I q & [State m]
______)

I

A state (mode of behavior) of the
machine.

The dotted line signifies that the
system exists in State A and
State B concurrently.

State S1 and S2 are substates of
State P (State P is the superstate;
S1 and S2 are its subordinates).

x: stimulus (input)
y: output

I

Stimulus is based on the system
entering State Q (conditional
transition).

Stimuli may be "OR'd." "AND'd,"
and combined with state
dependencies.

I

1.

2.

3.

4.

5.

6.

7.

Statecharts are extensions to FSMs (STDs).

A statechart represents the behavior of a system in terms of
the states in which the system may exist.

All names used in the statechart should be unique; this makes
it easier to refer to items in the statechart.

Meaningful names should be used to label the states and
st imulHJ0 NOT use names like "running process" to label a
state or "signal" to label a stimulus. Remember, you should be
able to look at a statechart and recognize the relationship
between the states and the stimuli to understand the behavior
of your system.

Arrows in a statechart represent the stimulus to the system;
remember, a statechart is NOT a DFD.

The statechart responds to a stimulus (input) by generating an
output (which may be NULL) and changing the state it is in.

A statechart should be developed from the top down-moving
from higher levels of abstraction to greater levels of detail.

State
W i State G

I [State
I

I

I

I
I

~~ ~~

The system is in State W; it is represented in terms of State F and State
G (the dotted line indicates that it exists in these states concurrently).
The unlabeled arrows point to the default entry (initial) state@) of the
system. When Stimulus p is received, it transitions to State 6. When q is
received, it transitions to State C; this in turn causes it also to transition
from State D to State E. When r is received, it outputs s and transitions
back to State A, with s causing State E to transition to State 0.

Possible Applications
Demonstration of concurrent processes
User interfaces

0 Parsers
Control systems
lnterprocess communication protocols

Advantages

Statecharts are very useful in representing the behavior of a

Unambiguous representation leaves little possibility of
system when it reacts to external stimuli.

misleading the reader.
Statecharts use simple notation and are easy to understand.
It is possible to represent a machine that exists concurrently
in another state. States may be 'AND'd" as well as "OR'd."
Complex systems can be represented in a series of state-
charts that show progressively greater levels of detail-
different parts of a statechart may show varying levels of
detail.
It is possible to show conditional state transitions; depen-
dence on another state andlor combination of stimuli is
possible (transitions are not just dependent on external
stimuli).

Disadvantages

Diagrams can get complicated when they are not develope
correctly.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook REQUIREMENT^ ANALYSIS PHASE 4.1-23

ENTITY-RELATIONSHIP DIAGRAMS (ERDs)

I I i

Entity
name label

An entity-a significant item
about which information needs
to be held

I

Attribute

label

An attribute of an entity-the
specific information that should
be held

Type of Represents the relationship
between entities

Connects an entity with its
attributes and relationships

All names used in the Entity-Relationship Diagram (ERD)
should be unique. Using unique names makes it easier to refer
to items in the DFD. Use meaningful names when labeling the
relationships and entities.
Entities:

Must have multiple occurrences or instances.
Each instance must be uniquely identifiable from other

If an entity cannot be uniquely identified, it may not be an

All entities are nouns, but not all nouns are entities.
If an entity has no attributes, it may be only an attribute.

Relationships are two-directional, significant associations
between two entities or between an entity and itself. Read a
relationship first in one direction and then in the other. There
are three types of relationships: many-to-one, many-to-many,
and one-to-one.
Attributes:

Information about an entity that needs to be known or held.
Describe an entity by qualifying, identifying, classifying,

Represent a type of description or detail, not an instance.
Should always be broken down into their lowest meaningful

Can have only a single value for each entity instance.
Cannot be derived or calculated from the existing value of

If an attribute has attributes of its own, it is really an entity.

instances.

entity.

quantifying, or expressing the state of the entity.

components.

other attributes.

Note: This example uses the Chen notation.

SWDGOPl

ERDs are used to represent the objects manipulated by a system,
showing their attributes and their interrelationships.

Advantages

Simple notation makes it easy to understand.
Simple notation is easy to develop and refine.
The system can be represented in increasing levels of detail.
An ERD is independent of the hardware or software to be
used in the implementation. It can be mapped to a
hierarchical, network, or relational database.

Disadvantages

Large ERDs are difficult to manage and understand.

Applications

Widely used for conceptual data modeling
Used for designing databases-entities translate into tables,

Used in modeling of real-world entities to ascertain
the attributes into the columns, etc.

interrelationships

SWOGOZl

Version 1 Hughes STX Proprietary

Section 4.2

Preliminary Design
Phase

Contents

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

4.2.8

Introduction4. 2.1

General Methodology for Developing a Preliminary Design4. 2.1
Organizing a Software Design Document4. 2.4

Summary .. .4. 2-5

Tailoring to a Small Project4. 2-5

Suggested Reference Material4. 2-6

Appendixes .. .4. 2-7

4.2.8.1 Checklists .. .4. 2-7

4.2.8.2 Sample Tables of Contents4. 2-13

4.2.8.3 Software Development File (SDF)4. 2-17

Reviews . 4 . 2-4

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Soflware Engineering Guidebook PFLELIMINARY DESIGN PHASE

Version 1 Hughes STX Proprietary

Software Engineering Guidebook PRELIMINARY DESIGN PHASE 4.2- 1

4.2.1 Introduction

The activities performed during the preliminary design phase include high-level design (also
known as the architectural design) of the software, initial development of the test plans (see
Section 4.6.7.1), documentation to record the software design, and the Preliminary Design
Review (PDR). Figure 4.2.1-1 represents the process flow diagram for the preliminary design
phase of software development.

In the requirements analysis phase, an SRS was developed to describe what the software will
do; in the preliminary design phase, the outline of how it will be done is established.

The activities during this phase should follow a well-defined, systematic approach as defined
in the SDP, (see Section 5.2), no matter which design methodology is used). The preliminary
design is the framework for the more detailed design decisions that will follow in the
subsequent phase. All future development activity will be based on the work done in this
phase.

Test planning is performed in this phase to ensure that the software can be tested. Preliminary
versions of the user manual and maintenance manual are developed in this phase to ensure
that once built, the software can be used and operated in the manner that was intended.

Partition the software system into its major structural and functional
subsystems.

Develop the operating procedures.

Identify and evaluate all alternative design strategies.

Define and associate all inputs to the system and outputs from the
system to specific subsystems.

subsystems.
Define all inputs and outputs between each of the software

Define the algorithms needed by the subsystems.

Outline error processing and recovery strategies.

Ensure that all requirements are being met by the software

Identify all existing software that will be used by this system.

subsystems.

4.2.2 General Methodology for Developing a Preliminary Design

The following steps describe a general methodology to develop a preliminary design:

1. Develop a high-level design using a well-defined design methodology. During the
design process:

a. Identify and select the software subsystems.
b. Allocate the functional requirements to software subsystems.
c. Allocate all other requirements (interface, design, programming, performance, and

quality) to the software subsystems whenever applicable.
d. Identify and select Commercial Off-the-shelf (COTS), Government-furnished,

proprietary, or reusable software to meet some or all of the allocated requirements.
e. Identify functional control and data flow among the software subsystems.

Version 1 Hughes STX Proprietary

4.2-2 mZELIMINARY DESIGN PHASE Software Engineering Guidebook

Make Decisions To
Build
Reuse
Buy

Eotimale
Code size Identify and Evaluate ~ ~

CosWresources
*--+ Design Alternatives

Schedule

Risk Analysis Expand Software Systems lo Software
and Management Subsystems

Construct design diagrams

Allocate algorithms
Identify physical software subsystem

Identify NO control sequence
Speciiy error handling strategy
Define shared code

Design database
Design interfaces

lntersoflware system interfaces
Intersoftware subsystem interfaces
User interfaces

T Generate prologs and POL

Allocate software
requirements data flow

t l A' Preliminary Revise Design
Verify:

Completeness
Feasibility
Compliance with requirements
Testing procedures
Modularity
Low coupling
High cohesion
Encapsulation
Reusability (if necessary)

Design Review Document, Test Plan,
Users Manual

informal Reviews With
CustomedUsers

SWDGOOB

Figure 4.2.1-1. Preliminary Design Phase Process Flow

f. Select and describe database(s) used by the software subsystems.

Describe the inputs to and outputs from the software subsystem.

Describe data (local and global) required by the software subsystem.

Describe events processed by the software subsystem.

Describe timing and sequencing conditions that cause the software

Describe algorithms, special control features, error detection, and

subsystem to be executed.

recovery processing of the software subsystem.

Note: It may be useful to use a design description language (i.e., PDL, structure graph, or other
formal syntax) when describing the high-level design.

2. Document the high-level design in a preliminary design version of the Software Design
Document (SDD) for each system. If required, submit the design documentation to the
customer for review.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook ~ZELIMINARY DESIGN PHASE 4.2-3

3. Develop a preliminary Interface Design Document (IDD) to document the preliminary
design for the interfaces external to each software system. If required, submit the design
documentation to the customer for review.

4. Document the rationale for key design decisions in a Software Development File (SDF),

5. Plan and document testing procedures for the software system and subsystem in one or
more software test plans. Planning includes development of test requirements, responsi-
bilities, and schedules. If required, submit the plans to the customer for review. (Refer to
Section 5.5.3, "Scheduling Multiple Builds.")

6. Estimate and/or measure resource utilization; for each software subsystem for each of the
budgets allocated in the requirements analysis. Verify the high-level design's implementa-
tion of allocated resource budgets using a documented system load. Establish a resource
budget plan, including management reserves, for each phase and report actual (and pre-
dicted) vs. budgeted utilizations.

7. Develop preliminary versions of the operations and support documents; and, if required,
submit them to the customer for review. Normally, the required manuals are:

a. Computer System Operators Manual
b. Software Users Manual
c. Software Programmers Manual

8. Perform a risk analysis; on the developed design plan. Some relevant questions are: What
are the plan's weak spots? Have alternatives been determined for each, if they are needed?
How much risk is involved? Refer to Section 5.6 for information on risk management.

9. Conduct an internal review and then a PDR of the products developed during this phase

see Section 4.2.8.1.

at the end of the preliminary design phase.

klecting the "correct" design methodology for a project is difficult; there
s no fixed formula that points to a specific methodology. The following is
1 list of some of the factors affecting the selection of a design
nethodology:

. If the project consists of moddying existing software, you are
encouraged to use the same methodology that was used in the original
development, which gives a more consistent design and
documentation. However, a different methodology may be used if the
new project will make major modifications, implement one or more
completely new major functions, or modify software that is expected to
undergo many more modifications during a long life. Remember, it is
more likely that existing code will need to be modified when using a
different methodology.

specific methodology, it may make sense to use it. No methodology is
strictly mechanical; each depends on the intelligence, creativity, and
attitude of the implementors. It is better to do a good job of structured
design than a poor job of object-oriented design, and vice versa.

If the customer has expressed a preference for (or has required) a
specific methodology, or if the proposal is based on a specific
methodology, changing to a different one would require a good
justification.

A better set of tools may exist (or may already be in-house) for one
methodology than exists for another.

If the project is staffed with people predominantly familiar with a

Version 1 Hughes STX Proprietary

4.2-4 PRELJMINARY DESIGN PHASE Software Engineering Guidebook

Two popular design methodologies are structured design and object-oriented design,
although many others (and many variants) exist.

Structured design-uses data flows in developing structure charts that show the interaction
of software elements. Evaluation criteria such as coupling, cohesion, information hiding, and
scope of effect are used to judge the quality of the charts and to guide the design team in
revising or improving the design. The team iterates between data flows and structure charts at
successively lower levels.

Object-oriented design-ncapsulates data and the operations performed on the data into
"objects." Objects are viewed functionally by other software and can be used without
knowledge of their internal data structures or operations.

In both design approaches, the goal is to encapsulate information about data structures and
operations, to prevent errors from propagating through the software. Because objects consist
of both data and operations, object-oriented design is promoted as fostering the ability to
reuse software. Both methodologies (and others) are described in numerous books, articles,
and courses. (Structured design; has been described by Yourdon and Constantine, Hatley and
Pirbhai, and DeMarco. Object-oriented design; has been described by Booch, Coad, Meyer,
Wasserman, Rumbaugh, et al.)

When descriptions of methodologies are required, as in a proposal or SDP, it may be
appropriate to describe techniques such as project notebooks, walkthrough, design standards,
and document review and control procedures, as well as the design methodology.

4.2.3 Organizing a Software Design Document

There are many ways of organizing an SDD. Section 4.2.8.2 presents sample tables of contents
for an SDD.

4.2.4 Reviews

4.2.4.1 Internal Review

Internal reviews provide early identification of potential problem areas and ensure that
requirements and standards are met. See Section 4.2.8.1 for details.

4.2.4.2 Preliminary Design Review

This section establishes guidelines for planning the presentation of software-related PDR
material. "Presentation material" is the set of viewgraphs or other visual media used in
conducting a formal review. Presentation material consists of summary data, created during
the design process or extracted from software development and management plans
(reformatted as necessary), for review by an audience that includes both technical and
management representatives. The purpose of a PDR is to formally review, with the contracting
agency, the high-level software design, the Software Test Plan (STP), and the preliminary
versions of the operation and support documents.

Sample checklists used to assess the results of the preliminary design are provided in Section
4.2.8.1. These checklists address the material to be covered at the PDR. The review procedures
in this section are meant to be tailored to individual project needs and requirements. [LSD481

Version 1 Hughes STX Proprietary

S o h e Engineering Guidebook PRELIMINARY DESIGN WE 4.2-5

4.2.5 Summary

nputs

Software Project Management Activities

Software Development Activities

Software Support Activities

'roducts

Review

SRS
IRS
SDP
Requirements Allocation
Resource Allocation

Revision of SDP
Risk Management
Estimation and Tracking

Development of Preliminary Design
Development of Interface Design Specification

CM
QA

SDD
IDD
SDFs
STP
Resource Usage Plan
RequirementsTraceability
Designwalkthrough Reports
Operations and Support Documents
- Computer System Operators Manual
- Software User's Manual
- Software Programmers Manual

PDR

4.2.6 Tailoring to a Small Project

Each project is unique. Tailoring the information provided in this section is essential in
defining and implementing the preliminary design function to a specific project. Regardless of
project size, the preliminary design function needs to be performed. Only the level of detail
and formality of the process and products vary among projects. Some of the factors to be
considered are:

Time

Resources

Complexity

Contractual commitments

Intended use of the product

It is impractical to try produce a complete set of documentation and to conduct formal
reviews in a small project where time and resources are very limited. It is essential, however,
to describe high-level design in writing and to describe at the high level how the software will
meet the requirements that were set. At a minimum:

Describe the overall strategy for implementing the software.

Determine whether it is based on existing software and identify software you plan on
reusing. Describe the modification procedures.

Version 1 Hughes STX Proprietary

4.2-6 PRELIMINARY DEIGN PHASE Software Engineering Guidebook

Determine whether it is procedure based or object oriented; identify the procedures and/
or classes (software components).

Describe how the requirements have been allocated to the software components.

If a user interface is required, describe how the interface responds to the events that were
specified.

Describe how the primary functions satisfy the requirements they are assigned.

If necessary (depending on the complexity of the software) describe the functions/classes

Briefly describe how the software will be tested and outline your test plan.

The goal is to communicate the design approach to the customer and other developers.
Remember to have the customer approve the design approach before proceeding to the next
phase. The formal PDR can be replaced with an informal presentation of the design approach
describing the issues above, culminating in agreement between the customer and developers
on all the design issues being addressed.

subordinate to those described in the high-level design.

4.2.7 Suggested Reference Material

Freeman, Peter, and Anthony Wasserman, Tutorial on Software Design Techniques, IEEE
Computer Society Press.

Coad, Peter, Object Oriented Design, Yourdon Press.

Page-Jones, Meiller, Structured Design.

Relevant Standards:

DOD-STD-2167A

MIL-STD-1521B

Data Item Descriptions (DIDs):

- DI-MCCR-80018-Computer System Operators Manual (O M)
- DI-MCCR-80027-Interface Design Document (IDD)
- DI-MCCR-80012-Software Design Document (SDD)
- DI-MCCR-80014-Software Test Plan (ST")
- DI-MCCR-80019-Software User's Manual (SUM)
GP 5-0-6 Attachment B

DFI 5-0-6.1-Software Design Process Practices

DFI 50-6.3-Internal Walk-through

DFI 50-6.4-Software Development File (SDF)

DOD-STD-1703 (NS)-Software Product Standards

ANSI/IEEE Std 1016-1987-IEEE Recommended Practice for Software Design
Descriptions

Version 1 Hughes STX Proprietary

Software Engineering Guidebook ~LIMINAFIY DESIGN WE 4.2-7

4.2.7.1 Cited References

[ISD48] Software Engineering Handbook, Build 3, Division 48, Information System Division,

[LSD481 Software Engineering Handbook, Build 3, p. 5 8 .

[lSD481 Software Engineering Handbook, Build 3, Appendix A.

Hughes Aircraft Company, March 1992, p. 51-55.

4.2.8 Appendixes

4.2.8.1 Checklists

The checklists provided in this section present a list of most of the issues that may need to be
reviewed. It may not be necessary to address each of the items in the checklist. The goal of
providing these checklists is for you to be aware of all the issues and for you to tailor these
checklists to your project by consciously eliminating the items you do not need.

These checklists can be used to assess the completeness and correctness of preliminary design
and the readiness for a PDR. The checklists are used to assess the design itself, the preliminary
design documents, and the material for a PDR.

I YIN I Check I
I I Are all design materials complete? I
I I Does the design adhere to the project's design standards? I
I I Is the design represented in the required format? I
I I Have all required sections of the design document been produced? I
I I Is a requirements trace available? I
I 1 Does the design implement all requirements allocated to this software system? I
I I Does the design address capabilities not specified in the requirements? I

Have possible error conditions been adequately addressed?

Have interfaces been adequately defined and addressed?

Have requirements other than functional requirements (e.g., quality factors, maintainability)
been adequately addressed?

Has usage of key resources been estimated?

Version 1 Hughes STX Proprietary

4.2-8 PRELIMINARY DESIGN PHASE Software Engineering Guidebook

I YIN I Check I
Has the contract-imposed standard (e.g., 1679A, 2167,490) been reviewed to ensure that all
required design information is complete and available?

Have the contract SOW and SDP been reviewed for design review applicability and require-
ments?

For design information that is incomplete or unavailable, have written waivers been
arranged with the program managerlcustomer?

t"
I

Check

Does the design contain all information required for the preliminary design in the SDD?

Does the design contain all information required in the preliminary IDD?

Has a thread for each operational transaction been developed?

Have all operating systeniexecutive interfaces been defined?

Have all 110 techniques and interfaces between the operating system and scheduled e l e
ments been defined?

Have all dependencies and interfaces between the operating system and scheduled elements
been defined?

Have all design limitations, including technical risk, been addressed and evaluated?

Have all open issues been addressed and documented?

Has the reusable software been identied and the approach for development established?

Are significant analyses and decision rationales documented in the design documentation?

Are software requirements complete in wriien form (i.e., in the SRS)?

Have all hardware components been selected?

Are all hardware components available?

Have all commercial, Government-furnished, and reusable software products been selected,
evaluated, and ordered?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook PRELIMINARY DESIGN WE 4.2-9

YIN Check

Have implied requirements, softwareimposed requirements, and carryover requirements (in the
case of lifted software) been identified, documented, and forwarded to the program manager/
customer?

~ ~ ~

Has a software requirements analysis internal review been conducted?

Have preliminary operations and support manuals been prepared?

~~

-

Y/N Check

Does the design implement all functional, interface, performance, quality, sizinghiming, and
adaptation requirements?

I I Has a cross-reference index assigning each software requirement to a preliminary design
software element been completed?

I I Does the design implement all other contractual requirements? I
I I Can all elements of the design can be traced to SRS or IRS requirements? I

YIN Check

Has an operational test scenario been defined and verified?

I I Have sizing and timing estimates been completed to indicate the software will meet reserve
requirements? 1 ____ _ _ _ _ ~ ____~ _ _ _ _ ~ _ _ _ _ ~

I 1 Are thread response times within requirements? I
Can the design be built within schedule and cost given the project constraints (Le., project sched-
ule, software budget, established software development environment, and identified operational
hardware configuration)?

Have all new algorithms been prototyped?

Is the design based on known, proven principles?

Have test points been identified that indicate the design is testable?

Have the Human-Machine Interface (HMI) features been prototyped?

Does the support software to be used on the project (i.e., compilers, system generators) support
the design?

Have technical risk and long-lead items been evaluated and documented?

Version 1 Hughes STX Proprietary

4.2-10 PRELIMINARY DESIGN PHASE Software Engineering Guidebook

I YIN I Check I
I I Is the level of design appropriate for this review? I
I I Does the design comply with standards given in the SDP? I

Within a margin of reasonableness, can the design be described as being no more and no
less than what is required?

Is the design implemented in accordance with the methodology and tools specified in the I I SDP?

Is the design internally consistent?

Is the design understandable?

Does the design address all necessary control features (scheduling, sequencing, interrupt
processing, special control)?

I Does the design address extreme conditions (error processing, startup, recovery, startover)? I
Does the design address the identification and description ot implementation for recursionlre- I entry?

I Does the design document adhere to the required format?
~ ~ _ _ _ _ _ ~ _ _ _

I Is the design document internally consistent?

I Is the design document consistent with other SDDs, IDDs, and the parent SRS and IRS?

Will the customer be able to use this document to understand and train others in understanding
the software system design?

Is the document ready to be delivered to the customer?

Is the document developed in accordance with the SDP, software CM plan, and the software QA
plan?

I

Is the document consistent with Software Users Manual?

I YIN I Check I
I Are the tests feasible? I
I Can all tests be conducted within budget and time constraints? I

~

Do all tests have objective success criteria?

Are all test scenarios defined and achievable?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook PRELIMINARY DESIGN PHASE 4.2- 1 1

YIN Check

Does the document adhere to the required format (e.g., GP 50-6, contract DID)?

Is it internally consistent?

Is it consistent with the parent SRS, i.e., is it traceable?

Is the document consistent with the preliminary design?

Is the document ready to be delivered to the customer?

Was it developed in accordance with the SDP, the SWHB, the software CM pian, and the soft-
ware QA plan?

YIN Check

Are all requirements allocated to specific tests or phases?

Have test responsibilities been identified?

Do test plans establish adequate test criterialcoverage?

Have test limitations been addressed and documented?

I YIN I Check I
Do the manuals adhere to the required format (e.g., GP 5-0-6, contract DID)?

Are they internally consistent?

Are they consistent with preliminary design, SDD, STP, and other user manuals?

Are they understandable?

Are the documents ready to be delivered to the customer?

Have normal and extreme operational conditions been addressed?

Version 1 Hughes STX Proprietary

4.2-12 PRELIMINARY DESIGN PHASE Software Engineering Guidebook

YIN Check

Have normal and extreme support conditions been addressed?

Are the content of the documents appropriate for the end user?

Were the documents developed in accordance with the SDP, the SWHB, the software
CM plan, and the software QA plan?

YIN Check

Have MIL-STD-1521 and other contractual requirements been reviewed to ensure that all
required information is complete and available?

I I Is the preliminary design ready to be presented at PDR?

I I Has the form of presentation been established?

I Have success criteria been agreed upon with the custom&

Is the PDR plan complete in terms of agenda, facilities, handouts, recording of minutes, action
items, and follow-up?

[ISD48]

Version 1 Hughes STX Proprietary

Software Engineering Guidebook PRELIMINARY DESIGN PHASE 4.2- 13

4.2.8.2 Sample Tables of Contents

Note: This appendix contains samples of design documents tables of contents. Please refer to Section
4.6.7.1 for samples of test plans.

1 .o

2.0

3.0

4.0

5.0

Introduction

Related documentation

Design approach and trade-offs
Describe the rationale and trade-offs and other
design considerations influencing the major design
decisions of the software.

Architectural design description
Describe the logical and functional design of the
software using:

Logical or functional decomposition
Description of subordinate software

Relationships and interactions between the

Logical data design-the conceptual schema
Entityldata identification and relationships
Timing and sequencing
Implementation constraints

External interface design
This section will evolve into the IDD
5.1 Describe the design for each interface in the
SRS in terms of:

subsystems including their inputs and outputs

software subsystems

Information description
Initiation criteria
Expected response
Protocol and conventions

6.0

7.0

8.0

9.0

10.0

11.0

Error identification, handling, and
recovery
Queueing
Implementation constraints

5.2 Interface allocation
This section will allocate the software's exter-
nal interface requirements to the appropriate
lower level elements. Use a table or graphics
to increase clarity. Ensure that all external
requirements, including performance, are allo-
cated.

Requirements allocation and traceability
This section documents the allocation of the soft-
ware requirements to the appropriate software
subsystems. Show the traceability of all require
ments, including performance and constraints for
this software, to the design presented above.
Explicitly identify any derived requirements.

If functionality is to be provided in incremental
builds, specify the requirements and functions
associated with each build.

Abbreviations and acronyms

Glossary

Notes

Appendixes

1

Version 1 Hughes STX Proprietary

4.2-14 PRELIMINARY DESIGN PHASE Software Engineering Guidebook

2.0 Referenced Documents

3.0 Preliminary Design
3.1 Software system overview

3.1.1 Software system architecture
3.1.2 Software system states and modes
3.1.3 Memory processing and time allocation

3.2.x Software subsystem x
3.2 Software system design specification

3.2.x.y Sublevel software subsystem

4.0 Detailed Design
4.x Software subsystem x

4.x.y Software module
4.x.y.l Software module design specifi-

cationlconstraints
4.x.y.2 Software module design

a. Inputloutput data elements
b. Local data elements
c. Interrupts and signals
d. Algorithms
e. Error handling
f. Data conversion
g. Use of other elements

- Other software modules
- Shared data stored in global

- Input and output buffers,
memory

including message buffers
h. Logic flow
i. Data structures
j. Local data files or database
k. Limitations

5.0 Software System Data
a. For data elements internal to the software sys-

tem

i) Name of the data element
ii) A brief description
iii) The units of measure, such as knots, sec-

onds, meters, and feet
iv) The limit range of values required for the

data element (for constraints provide the
actual value)

v) The accuracy required for the data ele
ment

vi) The precisionlresolution in terms of signif-
icant digits

vii) For real-time systems, the frequency at
which the data elements are calculated!
refreshed, e.g., 10 KHz, 50 Msec

viii) Legality checks performed on the data
element

ix) The data type, such as integer, ASCII,
fixed, real, enumeration

x) The data representation format
xi) The software module where the data ele

ment is set or calculated
xii) Thssoftware module where the data ele

mentis used
xiii) The data source from which the data are

supplied, e.g., databases or data files,
global common, local common, compool,
datapool, parameter

b. For data elements of the software systems
external interfaces
i) Identify the data element
ii) Identify the interface by name and project-

iii) Reference the IDD in which the external
unique identifier

interface is described

6.0 Software System Data Files

ule reference
6.1 Data file to software subsystemlsoftware mod-

6.x Data file name

7.0 Requirements Traceability

8.0 Notes

9.0 Appendixes

Version 1 Hughes STX Proprietary

Software Engineering Guidebook PRELIMINARY DESIGN PHASE 4.2- 15

2.0 Related Documentation

3.0 Detailed Design Approach and Tradeoffs

4.0 Detailed Design Description
4.1 Compilation Unit Design and Traceability to

4.2 Detailed Design and Compilation Units
Architectural Design

5.0 External Interface Detailed Design
5.1 Interface Allocation Design
5.2 Physical Interface Design

6.0 Coding and Implementation Notes

7.0 Firmware Support Manual

8.0 Abbreviations and Acronyms

9.0 Glossary

10.0 Notes

1 1 .O Appendixes

2.0 Summary of Requirements
2.1 SystedSubsystem Description
2.2 SystedSubsystem Functions

2.2.1 Functional Allocation Description
2.2.2 Functional Requirements Matrix
2.2.3 Accuracy and Validity
2.2.4 Timing

2.3 Flexibility

3.0 Environment
3.1 Equipment Environment
3.2 Support Software Environment
3.3 Interfaces

3.3.1 Interface Block Diagram

1.0

3.3.2 Software Interfaces
3.3.3 Hardware-to-Software interfaces

3.4 Security and Privacy
3.5 Storage and Processing Allocation

Design Details
4.1 General Operating Procedures
4.2 System Logical Flow

4.2.1 Program Interrupts
4.2.2 Control of Computer Program Compo-

nents
4.2.3 Special Control Features

4.3 System Data
4.3.1 Inputs
4.3.2 Outputs
4.3.3 Displays

4.3.3.1 Description of Displays
4.3.3.2 Display Identification

4.4 Program Descriptions
4.4.1 Computer Program Identification

nent No. 1
4.4.1.1.1 Computer Pro-

gram Component
No. 1 Graphical
Representation

4.4.1 .I .2 Computer Pro-
gram Component
No. 1 Description

4.4.1.1.3 Computer Pro-
gram Component
No. 1 Interfaces

4.4.1 .X Computer Program Compo-

4.4.1 .I Computer Program Compo-

nent No. X
4.4.1 .X.1 Computer Pro-

gram Component
No. X Graphical
Representation

4.4.1 .X.2 Computer Pro-
gram Component
No. X Description

4.4.1 .X.3 Computer Pro-
gram Component
No. X Interfaces

4.4.N Computer Program No. N
4.5 database

5.0 Test and Qualification

6.0 Notes

Version 1 Hughes STX Proprietary

4.2-16 PRELIMINARY DESIGN PHASE Software Engineering Guidebook

1 .O General
1.1 Purpose of the Interface Control Document
1.2 Project References

2.0 Interfaces
2.1 Interface Block Diagram
2.2 Software Interfaces

a) Interface identification
b) Functional description
c) Direction of data flow and transfer of control
d) Formats and volumes of data to be passed
e) Types of interface, such as manual or automatic
9 Interface procedures, including telecommunications considerations
g) Priority level of the interface data interrupt
h) Maximum time allowed for the receiving software element to respond to the interface data interrupt and effects

of not responding within the allocated time
i) Design requirements imposed upon other'computer programs as a result of the design of the interface

2.3 Hardwareto-Software Interfaces
l a) Interface identification

b) Functional description
c) Direction of signal
d) Format of signal
e) Transfer protocol used for the signal interface
9 Frequency of the signal
g) Priority of the signal
h) Maximum time allowed for responding to the signals, and the effect of not responding within the allocated time
i) Design requirements imposed upon the computer program as a result of the design of the interface

Version 1 Hughes STX Proprietary

Software Engineering Guidebook PRELIMINARY DESIGN -E 4.2- 17

4.2.8.3 Software Development File (SDF)

This section is a collection of all the documentation describing the development and testing of
an individual software module. It serves as a common point of reference for a particular
software module with respect to requirements addressed, design issues, code, test procedures
and reports, and problem reports. SDFs are also known as Unit Development Files/Folders
(UDFs).

At a minimum, the SDF should contain:

Requirements addressed

Design considerations and constraints

Design documentation and data

Schedule and status information

Source code listing

Test requirements

Test cases

Test procedures

Test results

Software problem reports

A separate SDF is created and maintained for each software module. An SDF is developed for
each module as it is identified during the design phase.

The SDF serves not only as a repository of module information, but is used to record and track
the status of all work completed to date on that module.

The SDF is also the primary tool for software QA staff to assess requirements traceability,
specification compliance, design verification, and coding standard compliance.

The following is an example of the contents of an SDF:

Cover Sheet-Ovewiew of the contents, schedule and
module status:

Section M o d e Listing:
Printed listing of enor-free compilation or assembly of module

Module name
List of contents (sections)
For each section:
- Schedule, completion, and review dates
- Names of developer and reviewer

Section 1-Requirements:
Software requirements addressed by this module
Conflicting requirements and their impact
Deviation or waivers from the requirements in the SRS

Section 2-Design:

Design description
Data flows, flowcharts, state machines, statecharts, etc.
Module's Program Design language (PDL)

Section 3-Functional Capabilities:
List of testable functions performed by the module

Section &Test Plan and Procedures:
Test plan describing the unit tests to be performed on the
module
Test procedures to be followed and a description of test tools
and drivers, test data, expected results, and acceptance
criteria to be applied

Section &Test Results:

Test results for each test that was performed, including test
date, start and stop times, tester's name, passlfail results,
anomalies, problem reports, and discrepancies

Section 7-Notes:
Any additional notes and comments regarding the module

Section &Review Comments:

Comments made by SQA staff during any review of the
module

Version 1 Hughes STX Proprietary

Section 4.3

Detailed Design Phase

Contents

4.3.1 Introduction4. 3.1

4.3.2 General Methodology for Developing the Detailed Design4. 3.1
4.3.3 Reviews4. 3.4

4.3.4 Summary . 4 . 3-5
4.3.5 Tailoring to a Small Project4. 3-5
4.3.6 Suggested Reference Material4. 3.6
4.3.7 Appendix .. .4. 3-7

4.3.7.1 Checklists .. .4. 3-7

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Software Engineering Guidebook D ~ A I L E D DESIGN WE

-
r1g and I.init

,

Version 1 Hughes STX Proprietary

Software Engineering Guidebook DETAILED DESIGN PHASE 4.3- 1

4.3.1 Introduction

This section establishes engineering guidelines for the detailed design phase, which includes
software subsystem and module design, performance analysis, test design, design and test
documentation, and formal review. Figure 4.3.1-1 represents the process flow diagram for the
detailed design phase of software development.

A detailed design is the fully decomposed design of all software subsystems that were
established in the preliminary software design. The detailed design identifies all modules and
specifies all module design constraints. Also described are the internal logic requirements and
interfaces of modules. The detailed design includes the finalized design of software system
interfaces and global databases.

Design during this phase should follow a well-defined, disciplined approach that has been
determined prior to this phase and documented in the SDP. To ensure awareness of testability
in the design, module and software subsystem test case development are included in the
detailed design phase.

4.3.2 General Methodology for Developing the Detailed Design

The following steps outline the development of the detailed design.

1. Develop a detailed design for all software subsystems using a well-defined design
methodology. The detailed design phase usually continues the methodology begun in the
preliminary design phase. The following tables identify tasks to be completed for various
elements of the software system during detailed design

S e l e c t and identify the component software modules.

Allocate functional requirements to the software

Define the software module architecture (describe the

modules.

relationship among software modules).

subsystem.
Define the global data requirements of the software

Version 1 Hughes STX Proprietary

4.3-2 DETAILED DESIGN PHASE Software Engineering Guidebook

L

Evaluate Elaborate System Archilecture
Alternatives (identi software modules) Reusable Software

Incorporate -
Define global data c requirements

to modules
Allocate requirements

Risk Analysis and Select and identify
Management software modules

For Each Somare Module
Construct design diagrams
Identi/describe inputs and outputs
Identi/describe local data requirements
Describe internal control
Generate prologs and PDL
Allocatddescribe algorithms
Describe physical software subsystem data flow
Specify error handling strategy
Define shared code

For Each Database

Select and identify the items passed on the
interface.

Identify type, initiation event, and response

Identify the field characteristics of each

requirement.

interface item.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook DETALED DESIGN PHASE 4.3-3

Specify the inputs to and outputs from the software module.

Identify the local data required by the software module.

Design the internal control of the software module.

Spec* the algorithms to be used.

Specify the external references.

Identify the limitations that constrain design of the software
module.

Note: Using a design description lnnguage (e.g., PDL, structure graph, M other formal syntax) makes it easier to
describe the detailed design.

2.

3.

4.

5.

6 .

7.

8.

9.

10.

11.

12.

Document the detailed design and the supporting engineering analyses and decision
rationale in a Software Design Document (SDD) and a detailed IDD. If required, submit
the SDD and IDD to the customer for review.

Establish and maintain SDFs or new software modules identified in the detailed design.

To support software subsystem integration, develop an Integration Test Plan (ITP) for
each software system during this phase and document it in the SDFs. The plan should
describe the testing of each software build as identified in the SDP. The plan should
describe integration procedures, test data sources and simulations, tests for resource
utilization, and plans for documenting problems and results. The plan may also allocate
requirements to test cases.

To ensure awareness of the testability of the design, develop software module and
software subsystem test cases and descriptions during the detailed design phase. Enter
the results into the corresponding SDFs.

For each software system-level test identified in the STF, describe and document test cases
in the software test description document for each software system. If required, submit
the software test description document to the customer for review.

Update the software users manual(s) as required with new information from this phase.

Complete the resource utilization; plan that was developed in the preliminary design. If
required, submit the resource utilization plan to the customer for review.

Continue to develop preliminary versions of the operations and support documents and,
if required, submit them to the customer for review. The normally required manuals are
the Computer System Operators Manual and the Software Users Manual.

Perform a risk analysis on the developed design plan. Some relevant questions are: What
are the plans weak spots? Have alternatives been determined for each, if they are needed?
How much risk is involved? Refer to Section 5.6 for information on risk management.

Conduct an internal review of all products developed during this phase. Refer to Section
4.3.3.1 for more information.

At the end of this phase conduct a CDR of the products developed during this phase.
tlSD481

Version 1 Hughes STX Proprietary

4.3-4 DETAILED DESIGN PHASE Software Engineering Guidebook

4.3.2.1 Tailoring a Methodology

A project may handle different categories of software in different ways during detailed
design. For complex or critical modules, it may require that detailed design consist of
pseudocode and formal reviews. For minor modifications to existing software, it may require
a marked-up listing indicating the location and kinds of changes (or the changes themselves).
If the contract permits, it may be useful to define categories of software. One such
categorization is shown below.

Category A category c Category B
Algorithms with unclear, poorly defined

Well-defined HMI Poorly defined HMI Modules with complex data structures or inter-
approaches

Well-defined algoriims High-risk areas or algorithms

faces
Modification of > W / O of existing code Modification of e 1 WO of existing code

Rehosted code with major algoriim change. Rehosted code with no major algorithm
changes
Reused code
Straightforward control modules

Category A would use the most rigorous and formal development methods, while category C
would use the most efficient methods (because of the lower risk involved with category C
software). Category B would be in between. Items that could vary by category include degree
of formality in walkthroughs, the need for formal walkthroughs vs. informal discussion or
review, the timing and detail of documentation, the thoroughness of module testing, and the
type of design material produced (charts, PDL, pseudocode, prototype code).

Methodologies can include more than the methodology used to produce the detailed software
design. When descriptions of methodologies are required, as in a proposal or SDP, it may be
appropriate to describe techniques such as project notebooks, walkthroughs, design
standards, and document review and control procedures as well as the methodology for
detailed design.

[ZS 0481

4.3.3 Reviews

4.3.3.1 Internal Reviews

This section establishes guidelines for the internal review of software products developed
during the detailed design phase. Internal reviews provide early identification of potential
problem areas and to ensure that requirements and standards are met.

4.3.3.2 Critical Design Review

This section establishes guidelines for planning the presentation of software-related CDR
material. "Presentation material" is the set of viewgraphs or other visual media used in
conducting a formal review. Presentation material consists of summary data, created during
the design process or extracted from software development and management plans
(reformatted as necessary), for review by an audience that includes both technical and

Version 1 Hughes STX Proprietary

S o h e Engineering Guidebook DETAILED DESIGN WE 4.3-5

management representatives. The objectives of the CDR are to establish detailed design
compatibility (i.e., to verify interfaces) and to review acceptability of the design, performance,
test characteristics, and associated documents.

Sample checklists used to assess the results of the detailed design are provided in Section
4.3.7.1. These checklists address the material to be covered at the CDR. The review procedures
in this section are meant to be tailored to individual project needs and requirements.

[150481

4.3.4 summary

Inputs

Activities

SDD
IDD
SDFs
STP
Resource Utilization Plan
Requirements traceability
Design Walkthrough Reports
Operations and Support Documents

Revision of SDP
Risk Management

1 Estimation, Monitoring and Tracking

Software Development Activities

~~~ ~ ~ 

Software Support Activities 

Products 

Review 

Development of Detailed  Design 
Development of Interface Design  Specification 

CM 
QA 

Updated Software  Design Document 
Software Development Files 
Resource  Utilization Plan 
Requirements Traceability 
Integation Plan 
Design Walkthrough Reports 
Software Test Description 
Software Module and Software subsystem Test Cases and 
Descriptions 
CDR Material 
Interface Design Document 
Updated Operations and  Support Documents 

Critical Design  Review 

4.3.5 Tailoring to a Small Project 

Each  project is unique. Tailoring the information provided in this section is essential in 
defining and  implementing the detailed design function to  a  specific  project. Regardless of 
project  size, the detailed design function needs to be performed. Only the level of detail and 
formality of the process and  products vary among projects. Some of the factors to be 
considered are: 

lime 

Resources 

Complexity 

Version 1 Hughes STX Proprietary 



4.3-6 DETAILED DESIGN F ” E  Software Engineering Guidebook 

Contractual  commitments 

Intended use of  the product 

In  small  projects  where  time  and  resources are very  limited,  the  detailed  design  phase  can 
often be  combined with the preliminary  design  phase. Just as  described in Section  4.2.6, at the 
very  least  the  following  should be addressed: 

Describe the overall  strategy  for  implementing  the  software. 

Determine  whether it is based on existing software and identify  software  you  plan  on 
reusing.  Describe the modification  procedures. 

Determine  whether it is procedure  based  or  object  oriented;  identify  the  procedures and/ 
or classes  (software  components). 

Describe  how  the  requirements  have  been  allocated  to  the  software  components. 

If a  user  interface is required,  describe  how the interface  responds  to  the events that  were 
specified. 

Describe  how the primary functions  satisfy  the  requirements  they  are  assigned. 

0 If necessary (depending on the  complexity of the  software),  describe  the  functions/classes 
subordinate to  those  described  in  the  high-level  design. 

Briefly describe  how the software will be  tested and outline your test  plan. 

The  goal  is  to  communicate  the  design approach to  the  customer and other  developers. 
Remember  to  have  the  customer approve the design approach before  proceeding onto the  next 
phase.  The  formal PDR and CDR can  be  replaced with an informal  presentation of the  design . 
approach describing  the  issues  above,  culminating in agreement  between  the  customer and 
developers on all  the design issues  being addressed. 

4.3.6 Suggested  Reference  Material 

Freeman,  Peter, and Anthony Wasserman, Tutorial on Software Design Techniques, IEEE 
Computer  Society  Press. 

Coad,  Peter, Object Oriented Design, Yourdon  Press. 

Relevant Standards: 

DOD-STD-2167-Software Development 

MIL-STD-1521-Technical  Reviews and Audits 

Data  Item  Descriptions  (DIDs): 

- DI-MCCR-80018-Computer  System Operators Manual (CSCOM) 
- DI-MCCR-80027-Interface Design  Document  (IDD) 
- DI-MCCR-80012-Software Design  Document  (SDD) 

- DI-MCCR-80015-Software  Test  Description (STD) 
- DI-MCCR-80019-Software User’s  Manual (SUM) 
DOD-STD-1703  (NS)-Software Product Standards 

ANSI/IEEE  Std  1016-1987-IEEE Recommended  Practice  for  Software  Design 
Descriptions 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook DETAILED DESIGN PHASE 4.3-7 

4.3.6.1 Cited  References 

[LSD481 Software  Engineering  Handbook,  Build 3, Division 48, Information System Division, 
Hughes Aircraft  Company,  March 1992, pp. 6-2-6-4. 

[LSD481 Software Engineering Handbook,  Build 3, March 1992, p. 6-4. 

[LSD481 Software  Engineering  Handbook,  Build 3, March 1992, p. 6-8. 

4.3.7 Appendix 

4.3.7.1 Checklists 

The checklists provided in this section present a list of most of the issues that may need to be 
reviewed. It  may not be necessary to address each of the items in the checklist. The goal of 
providing these checklists is for you to be aware of all the issues and for you to tailor these 
checklists to your project by consciously eliminating the items you do not need. 

These checklists can be  used to assess the completeness and correctness of detailed design  and 
the readiness for  a CDR. The checklists are used to assess the design itself, the detailed design 
documents, and the material for a  CDR. 

YIN Check 

Does the  design  contain  all  the  information  required  in  the SDD? 

Does the  design  contain  all  the  information  required  for  the  database  design? 

Does the  design  contain  all  the  information  required  in  the  IDD? 
~ 

I 
Has  a  thread  for  each  operational  transaction  been  developed? I 
Have the  modules  of the design  been  allocated to an  operational  thread  where 
applicable? 

Have  the  module  and  software  subsystem  test  cases  been  described in terms  of 
inputs,  expected  results,  and  evaluation  criteria? 

YIN Check 

Have  all  hardware  components  been  selected? 

Have  all  commercial  software  products  been  selected? 

Have  open  design  issues  been  identitied  and  risk  assessments  performed? 

r F G u a i  been  updated? 

Has  the STP been  completed  and  approved? 

Have  the SRS and IRS been  completed  and  approved? 

Version 1 Hughes STX Proprietary 



4.3-8 DETAILED DESIGN PHASE Software Engineering Guidebook 

Check 

Does  the  design  implement all functional,  interface,  performance,  quality,  sizingl 
timing,  and  adaptation  requirements? 

Does  the  detailed  design  implement  the  top-level  design? 

Does  the  design  accommodate  TBDs in the SRS and IRS? 

YIN  Check 

Has  an  operational test scenario  been  defined  and  verified? 

I Does  the  design  meet  performance  within  system  resources? 
~~~ ~ _ _ ~  ~ I Are  thread  response  times  within  requirements? 

~~

I I Can the design be built within schedule and mt?

Have all new algorithms been prototyped?

Is the design based on known, proven principles?

Is the design testable?

Have HMI features been prototyped?

I Does the design incorporate applicable human factors engineering principles? I
I Have high-risk design areas been identified?

~~

I I Is the design cross-referenced with functional requirements? I

I YIN I Check I
Is the level of design appropriate for this review?

Does the design comply with standards given in the SDP?

Within a margin of reasonableness, can the design be described as being no more
and no less than what is required?

Has reusable code been used in the design whenever feasible?

Is the design decomposition in accordance with criteria given in the SDP?

Has each software system been decomposed into modular software subsystems
and Modules?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook DETAILED DESIGN PHASE 4.3-9

Does it adhere to the required format?

Is it internally consistent?
-

Is it understandable?

Does the document match the design?

Is the document ready to be delivered to the customer?

Are all the SDDs consistent as a set?

I YIN 1 Check I
Does it adhere to the required format?

Is it understandable?

I
I

I Does it match the design?

Is it ready to be delivered to the customer?

Is the database design consistent with the functional design?

YIN Check

Does it adhere to the required format?

Is it internally consistent?

Is it understandable?

Does it match the overall design?

Is the document ready to be delivered to the customer?

Have interface limitations and constraints been identified?

Have inconsistencies in interface requirements been identified and resolved?

Are all the SDDs consistent as a set?

Version 1 Hughes STX Proprietary

4.3-10 DETAILED DESIGN PHASE Software Engineering Guidebook

1 YIN I Check I
1 Have all operational threads been addressed?

Has a cross-reference between tests and software design been established?

Are the tests consistent with the SRS and operational concept document?

Is the test environment feasible (can it be implemented)?

Have all special test resources been identified?
~

Have regression test requirements been addressed?

YIN Check

Does it adhere to the required format?

Is it consistent with the parent STP?

Is it understandable?

Is the document consistent with the detailed design?

Is the document ready to be delivered to the customer?

I YIN I Check I
Have module and software subsystem test plans been developed and documented?

Are module and software subsystem test cases consistent with the parent STP?

Are test resources available?

Are test conditions reproducible?

Version 1 Hughes STX Proprietary

S o h e Engineering Guidebook DETAILED DESIGN PHASE 4.3- 1 1

YIN Check

Do module and software subsystem test cases comply with the requirements?

Do module and software subsystem test cases define the detailed test
constraints required for each module and software subsystem?

Are module and software subsystem test cases consistent with the Software
. Users Manual?

Are test cases understandable?

Are module and software subsystem test cases consistent with the design?

Have data reduction and analysis techniques been identified?

Is the design ready to be presented at CDR?

Has the form of presentation been established?

1 Have success criteria been agreed upon with the customer?

r complete in terms of agenda, facilities,
handouts, recording of minutes, action items, and follow-up?

Version 1 Hughes STX Proprietary

Section 4.4

Code and Unit Test
Phase

Contents

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

4.4.9

4.4.10

Introduction .. .4. 4.1

General Methodology for Performing Code and Unit Testing4. 4-1

General Guidelines for Developing Code 4.43
Activities Following Unit Testing 4.413

Organizing the Unit Test Documentation 4.414

Reviews .. 4.4-14

Summary ... 4.415
Tailoring to a Small Project 4.416

Suggested Reference Material4. 4-16

Appendix .. 4.417

4.4.10.1 Coding Guidelines for C 4.417

4.4.10.2 Checklists4. 4-22

Version 1 Software Engineering Guidebook Hughes SIX Proprietary

S o h e Engineering Guidebook CODE AND UNiT TEST PHASE

I \
\ \

\ \

\ \

\
\

\
\

\
\

\

\ \

\
\

\
\

\
\

\

\

\

\

\

\
\

\

\

\

\

\

\

\
\

\

\

\

\

\

\

\

\

\

\

\

,.. ,: .,,. A<?. ... :

Version 1 Hughes STX Proprietary

S o h e Engineering Guidebook CODEANDUNITTESTPHASE 4.4-1

4.4.1 Introduction

This section presents the engineering guidelines for the code and unit test phase. This phase
includes coding, code reviews, unit testing, preparations for software subsystem and software
system testing, and updating the operations and maintenance manuals. The main activities of
this phase are the coding, code reviews, and testing of each unit to ensure that it is correct and
performs according to the design specifications. Coding consists of implementing the detailed
designs in the selected programming language. The products of these activities are retained in
each module's Software Development File (SDF).

The order of coding is defined by the project. Two different approaches are top-down and
bottom-up. In the top-down development approach, the top-level units are coded first,
followed by units of successively lower levels. Bottom-up development starts with coding the
lowest-level units first and then proceeds to successively higher levels. A mixture of these
approaches is sometimes used, especially for testing new hardware, commercial-off-the-shelf
(COTS), and/or external interfaces (this implies that low-level interface routines should be
done first). Particularly critical, complex, or poorly defined software units can be coded and
tested early regardless of their level in the hierarchy.

Review of the code against the design is done after coding, but before unit testing. Code
reviews can be performed by code walkthroughs or code reading. Both techniques review the
internal correctness of a unit(s), proper implementation of the detailed design, and the unit's
understandability and maintainability and whether it follows the project-specific coding
standards. The main purpose for these types of reviews is to detect errors. The earlier errors
can be detected, the lower the cost of fixing them.

Unit (or module) testing ensures that the modules perform as specified in the design. Testing
covers both the internal workings of the module and the module's external interfaces (i.e., its
input and output). Types of testing include logic path testing and data value testing (e.g,
correct and incorrect data, boundary values). This type of testing is referred to as "white box
testing," i.e., testing the internals of the module.

4.4.2 General Methodology for Performing Coding and Unit Testing

Coding and unit testing should follow a well-defined, disciplined approach that has been
established for the particular project and agreed upon by project members (managers,
developers, and software support staff). This approach should have been documented in the
Software Development Plan (SDP).

1. Review the code and unit test approach, procedures, and other specifications given in the
SDP. Should changes be advisable or necessary, update the SDP using the CM procedures
given in the SDP.

2. Populate each module's SDF with its applicable requirements and design information.

3. Code each new or modified module (i.e., make changes to reusable code) in the specified
programming language, in accordance with the coding standards established and
documented for the project in the SDP. (Guidelines for coding, which can be used to
develop a project's coding standards, are given in Section 4.4.10.1.) The sequence to be
followed in coding modules should also be given in the SDP. Compile the code with the
specified compiler, and then revise and recompile until all compilation errors are
removed. Put a copy of the compiled listing into the module's SDF.

Version 1 Hughes STX Proprietary

4.4-2 CODE AND urn msr PHASE Software Engineering Guidebook

4.

5.

6.

7.

8.

9.

Review the code using either the code walkthrough or the code reading technique.
(Sample copies of a code reading form and code walkthrough checklists are given in
Section 4.4.10.2) Store the review form or checklist in the module's SDF.

Make any revisions resulting from the review. Repeat Steps 3 and 4 until all errors are
resolved. Store the updated compiled listing and review comments in the SDF.

Develop the unit test plan and test procedures for each module and record these in each
SDF.

Unit test, review, and, if necessary, retest each module until it passes all unit test cases.
Record the unit test results in the corresponding SDF.

Estimate and/or measure the resource utilization for each of the budgets allocated in the
requirements analysis. Verify allocated resource budgets of the code implementation
using a documented system load and (if applicable) a calibrated model. Report the actual
(predicted or measured) vs. budgeted utilization according to project instructions.

To reflect an accurate representation of each module, maintain its SDF throughout this
phase.

10. If necessary, update the Integration and Test Plan (IT") that was created during the
detailed design phase. The plan should describe the integration test procedures, test data
sources and simulations, tests for resource utilization, and p l m for documenting
problems and results. The plan may also indicate the allocation of requirements to test
cases.

11. Develop subsystem integration and test procedures and document them in the SDFs. (See
the checklist for Subsystem/System Test Procedures in Section 4.5.7.1.)

12. To begin planning for system-level testing, develop preliminary system test procedures
for each system. Document these in the Software Test Description (STD). If an
independent test team/organization (IT01 is to be used on the project, they are the ones to
plan and document the system-level tests. In this case, the developer needs to review the
plans and procedures being developed by the ITO.

13. Update, as necessary, the Computer Operators Manual, Software Users Manual, and
Software Programmers Manual.

14. Update all prior documentation, especially requirements, design, and test plans, to
accurately reflect the current software implementation and planned tests, in accordance
with the CM procedures and mechanisms described in the SDP.

15. As each module successfully completes unit testing, enter it into the Software
Development Library (SDL) to maintain configuration control. This is necessary at this
time because the module is now accessible to all members of the project and has the
potential of receiving change requests. The module is now available for integration
testing.

[IS0481

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND U N I T ~ T WE 4.4-3

4.4.3 General Guidelines for Developing Code

4.4.3.1 Terminology

We will use the following terminology to refer to entities in source code files across different
programming languages.

Function: The smallest "callable" entity supported in the programming language. Listed
below are some programming languages and what "function" will denote in each of them:

c-functions

C++-functions, methods

FORTRAN-main routine, subroutine, function

Pascal-function, procedures

Lisp-functions

Prolog-procedures (collections of rules whose heads all consist of the same predicate
with the same arity).

File: A disk file containing source code.

Module: A collection of one or more conceptually related source code files; for example:

C++-class header and source files

Ada-packages

C-source file(s) and accompanying header file (e.g., stdio, signal, string)

4.4.3.2 Guidelines for Comments

4.4.3.2.1 General Guidelines

The purpose of comments is to make the code easily understandable to individuals who need
to review or maintain the code.

Comments should provide "higher level" descriptions of what is going on than would be
revealed by inspection of code.

Comments should be maintained to ensure their correctness; inaccurate comments are
more damaging to code than no comments at all, because other developers and
maintainers may make erroneous decisions based on those comments.

4.4.3.2.2 In-Line Comments

4.4.3.2.2.1 General

Although different programming languages have different commenting practices, there are
some general guidelines that apply across languages. Your in-line comments should:

Version 1 Hughes STX Proprietary

4.4-4 CODE AND UNIT TEST PHASE Software Engineering Guidebook

Account for a significant percentage of the lines in your source code.

Appear before every important control construct (loops, if-thens, etc.), where the purpose
of the construct is not immediately obvious.

4.4.3.2.2.2 Commenting a Single Line of Code

Above-the-Line Comments

For above-the-line comments, use the following guidelines to create a strong visual link
between the comment and the code:

Place the comment immediately above the line of code (without separating white space).

Indent the comment to the same column as the line of code.

Offset the comment/code pair from any surrounding code with vertical whitespace. For
example: Punctuate the comment appropriately to enhance readability. Begin the
comment with a capital letter and end it with a colon or ellipsis to direct the reader's eye to
the text that follows.

. . . other code . . .
/* Here's my comment: */
statement to be commented;

. . . other code . . .

Use at least one space between the comment marks and the actual comment text ... do not
"jam" the text in.

Right-Margin Comments

For short comments (and for languages that support it), you can place the comment to the
right of the line of code; leave enough white space to easily distinguish between the two.
If you are commenting a block of statements this way, try to line up all the comments:

first statement; // do the first thing
second statement; // and the second
third statement; // and the last

I I

Punctuation and capitalization are less important with this type of "post-it note" comment.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND UNITTESTPHASE 4.4-5

4.4.3.2.2.3 Commenting a Block of Code

To comment a block of statements, you can use the above-the-line approach if the statements
have no above-the-line comments of their own:

. . . o t h e r c o d e . . .
/* I f needed , do t hose t h ings : */
i f (tes t) {

d o t h i s t h i n g ; /* v e r y i m p o r t a n t */
d o t h a t t h i n g ;

3

. . . o t h e r c o d e . . .

If the block of code is more complex, use a different style to make the block comment stand
out:

. . . o t h e r c o d e . . .
/* AND NOW, A TWO-PART INVENTION . . . */
/* The f i r s t p a r t : */
t h i n g o n e ;
t h i n g t w o ;
t h i n g t h r e e ;

/* The second par t : */
t h i n g a ;
t h i n g b ;
t h i n g c;

. . . o t h e r code.

4.4.3.3 Prologues

4.4.3.3.1 What Are They?

Prologues are comments placed before functions (or procedures, or methods) and at the top of
files. (Note: Refer to Section 4.4.3.1, Terminology, to select the prologue type that applies to
your programming language. For instance, for programming in Fortran, only function
prologues and possibly file prologues apply; for C, C++, and Pascal, all prologue types apply.)

Afunction prologue describes the function that follows it: its purpose, arguments, return
values, etc.

Afile prologue (at the top of a file) describes the file it is in.

A module prologue is a special file prologue used for one designated file of a module.

Version 1 Hughes STX Proprietary

4.4-6 CODE AND UNIT TEST PHASE Software Engineering Guidebook

4.4.3.3.2 Why Use Them?

Prologues provide “one-stop shopping” for important information. If you need to know what
a function’s return values are, look at the function prologue. If you need to know the purpose
of a file, look at the file prologue.

Uniform prologues make it easier to scan files for information. Project-standard prologues in
standard locations are more visually obvious than sporadic comments, making it easier to
visually locate functions or other information in a listing.

4.4.3.3.3 General Guidelines

The style of all prologues in a project should be consistent. Uniformity enables developers to
easily scan code developed by others for desired information. Variation of styles within a
project produces utter chaos.

The prologue should begin with the name of the item being documented (filename, function
name, etc.), and it should be offset in some visually obvious way (surrounded by asterisks,
newlines, etc.). This allows quick visual scanning through source text for desired functions.

Prologues should be divided into Sections; use the following guidelines to make it easier to
find desired information within a long prologue:

Take each section from a standard set of topics.

Present the topics in a standard order.
Omit inapplicable sections entirely or leave the topic name in as a ”placeholder.”

Introduce each section by the topic name, which should be offset so that it is easy to find
(e.g., in all capital letters, on a line by itself, indented several spaces to the left of the text
following).

Use “inheritance” of documentation where appropriate: Information in module prologues is
understood to pertain to all files and to all functions in the module. If necessary, a file or a
function can override this information in its prologue, declaring itself to be an exception to the
general rule(s).

Avoid excessive detail in your prologues, which can make it more likely that the prologues
will become “out of synch with the in-line comments as the code changes or evolves.

4.4.3.3.4 Function Prologues

Function prologues are always placed immediately before the source code for the function
itself.

You may wish to precede them by a page break for more readable printouts (page-breaks are
white space characters and are typically ignored by compilers and interpreters).

The following are suggested “standard” section topics, in suggested order of appearance:

DESCRIPTION--What the function does, and possibly who calls it.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODEANDUN~TTESTPHASE 4.4-7

ARGUMENTS OR PARAMETERS-What all/some of the arguments are, in detail. You may
choose to omit arguments from this section if they are adequately described by in-line
comments or by the file/module prologues.

RETURNS-possible return values, and circumstances under which they would be
returned (these can be very general; e.g., “returns zero on success, negative on error”).

ALGORITHM-HOW the function does what it does, if this is important information and
not easily deducible from the in-line comments. You would probably use this only for
very complex functions.

NOTES-Misceuaneous notes, for maintainers or serious users of the function.

WARNINGS-Anything that users of the function should keep in mind.

BUGS-Any bugs or shortcomings in the function that should be corrected.

MODIFICATIONS-Modification history of the function. Every entry should have a date,
the name or initials of the person who made the modification, and a short description of
what was changed.

OTHER-AIIY other topics you think are useful (e.g., sample calling sequence).

The following is a sample function prologue:

.
* SgMakeLemonade .
*
* DESCRIPTION * Make some lemonade.

* ARGUMENTS
*
* ‘num-lemons’ is t h e number of lemons t o u s e .

* ‘how-sweet’ is either SgSOUR or SgSWEET. I f
* given as ze ro , t h e d e f a u l t is SgSWEET.

*

*
* RETURNS
* The number of p i n t s of lemonade made on success,
* or negat ive on f a i l u r e .

* WARNINGS
* I f SgSWEET is s p e c i f i e d , the lemonade w i l l be
* higher i n c a l o r i e s .

*

*/

4.4.3.3.5 File Prologues

File prologues should be placed at the top of each source code file.

The following are suggested “standard” section topics, in suggested order of appearance:

DESCRIPTION-What the file contains. You may wish this to be a very short description,
ending with a “see file X, where file X is the module “header” file.

MODULE-What module the file belongs to. You may not need this section if the
information is self-evident from the filename. For example, a C development project may
define that files of the form ”X.c”, “X.h, ”X-p.h belong by definition to module ”X.

Version 1 Hughes STX Proprietary

4.4-8 CODE AND urn WE Software Engineering Guidebook

AUTHOR-ne author of the file. This is useful information, even if the file author is
always the same as the author of the module.

4.4.3.3.6 Module Prologues

Module prologues are a special case of file prologues. For each module, you should designate
one file of the module to contain the module header. For example, in a C application, you
might decide that for every module X consisting of files X.c and X.h, the file X.h will contain
the module header.

The following section topics are suggested:

DESCRIPTION-what the module does, and perhaps what files or submodules it consists
of.

AUTHOR-ne author of the module. This is usually the author of all files in the module.

NAMESPACE-A description of the names of all entities in the module that are “visible” to
the outside world. This information is useful in avoiding naming conflicts in large
applications. Note that the best “namespaces” are usually the ones with the shortest
descriptions; for example, one module’s namespace might be ”cmstants, functions, and
variables in mixed case beginning with ‘Xt’ followed by a capital letter.”

MODIFICATIONS-Modification history of the module. Every entry should have a date,
the name or initials of the person who made the modification, and a short description of
what was changed. If you use RCS, SCCS, CMS or some other CM system, you may not
need this section, because the system will track the history for you.

4.4.3.4 Epilogues

Just as all files should begin with a standard file prologue, so they should end with a standard
file ”epilogue,” for example:

The presence of such an epilogue indicates that the file has not been accidentally truncated.
Like the prologue, the epilogue should contain the file name.

4.4.3.5 Banners

Often, a source code file may be divided up into several sections, each with a different
purpose; for example, constant declarations may be at the top, followed by global variable
declarations, followed by “private” helper functions, followed by ”public” functions. To make
it easier to locate these sections and to assist other developers in adding new entities to the
file, you may wish to introduce each section with a ”banner” comment.

In a way, banners are, simple prologue comments, except that:

Because a banner may cover a collection of functions, each of which has its own function
prologue, you should choose a banner style that stands out from the prologue style.

Version 1 Hughes STX Proprietary

Software Encheering Guidebook CODE AND UNITTEST PHASE 4.4-9

Banners generally contain nothing more than a short description of the section that
follows, and for the most part, the same sections will appear over and over in different
files. For example, one project might use the following “standard” banners:

CONSTANTS, to introduce the definition of global constants.

TYPES, to introduce the definitions of user-defined types.

GLOBALS, to introduce the definition/declaration of global variables.

PRIVATE FUNCTIONS, to introduce ”internal” Utility functions.

PUBLIC FUNCTIONS, to introduce functions that are usable by the outside world.

4.4.3.6 Naming Conventions

4.4.3.6.1 Objectives

When developing source code, programmers must frequently decide upon the names of any
new entities (functions, types, constants, and global variables) that they are introducing into
the global namespace of the system that they are developing.

We introduce the following suggested naming conventions for several reasons:

To avoid, or at least seriously minimize, the chance of name collisions between HSTX-
developed software and system entities or entities in external packages.

To avoid, or at least seriously minimize, the chance of name collisions between reusable
HSTX-developed software originating from separate HSTX development projects.

To produce entity names that are as brief as possible, so that:

- Visual bandwidth (the amount of information that the typical reader can absorb at one

- Typing is kept to a minimum.

- Entities do not take up so much room that single lines of code must be placed on

glance) is not exceeded when reading or scanning for function names.

multiple text lines to fit in an 80-character-wide display.

To produce entity names that are as legible as possible.

To name entities so that their module of origin is self-evident by examination of the name,
which will increase the understandability of the code.

4.4.3.6.2 Name Styles

All entities will have names consisting of one or more “words.” How the words are
distinguished depends on the conventions and limitations of the individual programming
language; here are some examples:

ThreeLittleWords (in “MixedCaseStyle”)

threeLittleWords (in “mixedCaseStyle”)

THREE-LITTLE-WORDS (in “ALL-CAPS-STYLE)

three-little-words (in ”all-lowercase-style”)

Version 1 Hughes STX Proprietary

4.4- 10 CODE AND UNIT TEST PHASE Software Engineering Guidebook

Every development project should pick one style and stick with it as much as possible for
naming all entities, perhaps with slight variations to indicate the nature of the entity being
named (e.g., all user-defined typenames might end with a ‘I-t”).

For example, the HSTX Software Reuse Repository uses the “MixedCase” style.

4.4.3.6.3 The Project Name/Namespace

The first word of an entity should unambiguously idenbfy the development project that the
entity belongs to, thus preventing name collisions between entities in that project’s library and
other libraries. Thus, the names of all entities originating from the same development project
should begin with the same first word, which we will call the project name. Entities whose
names begin with a given project name are said to fall within that project namespace.

For example, the HSTX Software Reuse Repository uses “Sr” as its project name. All entities
in the Repository have names of the form ”Sr . . . ”, where ” . . . ” is in ”MixedCase” style.
Thus, the function ”SrLogFileOpen” falls within the “Sr” project namespace.

The project name should be:

Two to four characters, to minimize typing and visual parsing.

As unique and uncommon a sequence of letters as possible (%.g., Sr, Eg, Fst ...)

4.4.3.6.4 The Module Name/Namespace

After the first word, a sequence of words (preferably one word) will identify the module within
the project that the entity belongs to. Thus, the names of all entities originating from the same
module should begin with the same sequence of words: the project name followed by the
module identifier. We will call the complete sequence the module name; entity names beginning
with a given module name are said to fall within that module namespace.

For example, the “message logging” module within the HSTX Software Reuse Repository has
“SrLog” as its module namespace, which is the project namespace “Sr” followed by the
identifier “Log.” All entities in this module have names of the form “SrLog . . . ”, where
” . . . ” is in “MixedCase” style.

The module identifier (the portion of the module name after the project name) should be:

Preferably one word (e.g., ”Logf ile” instead of ”LogFile”).

Preferably a noun phrase (e.& “Log”, “File”, etc.).

Unique within the project, to avoid name clashes within a project.

As few characters as possible, as far as the number of characters, to minimize both the
typing and the ”visual bandwidth of entity names within that module. For example,
“Uif” instead of ”UserInterface.”

4.4.3.6.5 Entity Names

Words that follow the project-and-module prefix, are used to distinguish among the different
entities in the module. At this point, variations within the naming style may be used so that

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND U ~ T E S T MSE 4.4- 11

entity names are "self-commenting." For example, consider the following entities for a
hypothetical module "SrFile":

TYPES : SrFile, SrFileProt.
FUNCTIONS: SrFileOpenO, SrFileClose(), SrFileWriteO.
CONSTANTS: SrFileOK, SrFileENOTFOUND, SrFileENOPERM.
GLOBALS : SrFileGNumOpen, SrFileGErrno.

Again, the entity name should be as short as possible to minimize typing and visual
bandwidth, but not at the expense of understandability.

4.4.3.7 Coding Style

4.4.3.7.1 General Philosophy

Most metrics of good coding style should not be taken too literally. Every language, every
task, has the potential for a number of exceptions that violate well-meaning rules of program
design.

When evaluating several design possibilities, keep in mind the spirit rather than the letter of
the laws of standard coding practices. The ultimate design objectives are:

CORRECTNESS-Does the code perform its intended task? Is appropriate error-
checking used? If it fails, does it do so gracefully and clean up after itself?

UNDERSTANDABILITY-Will other developers be able to understand my code when I
have left the project? Will I understand my own code a year from now?

MODIFIABILITY-Can the code be easily adapted to changes in the requirements of the
system? Can it be easily extended to cover a wider variety of inputs?

REUSABILITY-Is the code unnecessarily specific to a particular task, or would minor
changes in the code render it useful for other tasks (or other environments) as well?

ELEGANCE-Does the code perform its task in a simple yet efficient manner?

You may have additional priorities for your system, such as portability, adherence to
standards, and encapsulation.

(For example, a brief, maintainable, elegant, and easily understandable solution using a
"goto" is arguably superior to a long, complicated, and incomprehensible solution that uses a
tangle of "ifs" and "whiles.")

Always use common sense when designing your code.

4.4.3.7.2 Code Structure

In the design phase, identify broad classes of tasks for your application (e.g., database access,
user interface utilities) and conceptual entities that need to be represented (e.g., satellites,
observations, orbital tracks), and then divide your code into modules (and submodules) based
on these classes. For each module, sketch out a plausible collection of interface functions by
which the "outside world" will "talk to the module. This basic organizational scheme will
greatly simplify code understandability and management.

Version 1 Hughes STX Proprietary

4.4- 12 CODE AND urn PHASE Software Engineering Guidebook

Modules should be as loosely coupled as possible: changes to the internal implementation of
one module should not require changes to any other modules, not even submodules.

Modules should be as strongly cohesive as possible: a module meant to model a specific entity
or task should contain all and only functions/information needed to adequately model the
given entity or task.

Beware of excessive nesting of control structures; generally, it makes code harder to read and
understand. Deeply nested code is sometimes an indication that a subtask of the current
function should be separated out and made a “helper” function in its own right.

In complex statements, use parentheses (or the functional equivalent in your programming
language) where allowed. This improves understandability and reduces the risk of errors
caused by incorrect assumptions about the precedence of operators.

4.4.3.7.3 Code Formatting

Regardless of your editing environment, limit the lines in your source files (and any output
files intended to be human-readable) to 80 characters. Longer lines are problematic for
developers or users who may not have access to wider terminals or terminal emulators.

Indent code according to the standards or conventions dictated by the language you are using,
if any; where more than one acceptable style exists, choose a single style, and use it throughout
the project. This will greatly enhance the readability of the code.

Where allowed by language conventions, indentation should be as slight as possible (e.g.,
from 2 to 5 characters per “tabbing” level). Large indentations can make it impossible to fit
right-margin comments, and ultimately source code, onto an 80-column page when the code
is deeply nested.

Use blank lines to separate “chunks” of code; typically, each such chunk should be preceded
by a comment.

Try not to have more than one executable statement per line of source code, unless you are
certain that it enhances rather than detracts from readability.

4.4.3.7.4 Files

Every file should contain code for either a single module or a portion ofa single module. The only
time a file should contain code for more than one module is when it contains code for a main
module and for one or more (preferably private) submodules of that module.

Decide on the explicit purpose of a file and stick to it. Do not use files as ”dumping grounds”
for functions and variables that don’t seem to belong anywhere else. (One popular exception is
a ”utils” module. Just don’t let it get out of control.)

Choose a filename to be as close as possible to the name of the module implemented by that
file.

4.4.3.7.5 Functions

Functions should have only a single entry point.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODEANDUNITTESTPHASE 4.4-13

Functions preferably should have only one exit point, with the exception of error exits; as many
"error" exits as are needed may be used.

Functions should be as long as they need to be to accomplish the task at hand. Don't let the
number of lines drive the implementation of the function-focus instead on the content, and
whether or not extracting out a task and placing it in a subfunction would make the code more
understandable and maintainable.

Avoid lengthy argument lists; they hamper modifiability of the function. If a function must
take a large number of conceptually related arguments, consider instead defining a record
structure that can contain most or all of that information and passing that single record
structure to the function instead of its component values. This approach allows easy addition
or removal of arguments.

Functions must "clean up" after themselves before or on exit, making certain that no
unintended side effects have occurred: files opened should be closed, memory allocated
should be freed, etc. Necessa y cleanup must be performed for both "success" and "error" exits!

4.4.3.7.6 Constants

Numeric constants should never be used in code, except for the most basic ones (0 and 1). Use
symbolic constants to improve understandability of code. For example:

If a number zero is well understood, the number of bits in a byte, you may do this:

f o r (i = 0 ; i > 8 /* b i t s p e r b y t e */ ; i++) {
3

4.4.3.7.7 Global Variables

Limit the use of global variables as much as possible without sacrificing clarity of code.

Limit direct access of a module's global variables by users of that module; instead, provide
"interface functions" for users to set and access these globals. These interface functions
encapsulate the module's internal representation of the global data, allowing the internal
representations to change without requiring extensive modification to external code.

Document global variables thoroughly.

Use a naming convention to identify variables as global (e.g., gFooBar)

4.4.4 Activities Following Unit Testing

After each module passes unit testing, it is entered into the SDL. Here the module is accessible
to all developers and can be used in integration testing. Because it is now widely accessible
and may require further changes, management of the module passes from the module's
developer to the CM staff. It is now the responsibility of the CM staff to ensure that modules in
the SDL are easily accessible to the developers and that all changes to these modules are
systematically tracked, authorized, implemented, and tested. CM staff is also responsible for
notifymg the developer of any changes.

Version 1 Hughes STX Proprietary

4.4- 14 CODE AND urn TEST PHASE Software Engineering Guidebook

When descriptions of methodologies are required, as in a proposal or SDP, it may be
appropriate for this phase to describe such methodologies as project notebooks, code
walkthroughs, code reading, coding standards, corrective action system, CM, and unit test
standards, as well as the process used to develop the code.

The code and unit test phase is completed when all modules have been written, reviewed, unit
tested, and entered into the SDL. In addition, all documentation for each module (e.g., code
walkthrough reports, unit test reports) must be up to date. Furthermore, any changes to the
requirements and/or software design resulting from this phase must be noted and submitted
via the project’s corrective action system (e.g., use of engineering change request, software
trouble report, software change request). Updates to the preliminary drafts of the operations
and maintenance manuals also need to be made during this phase.

4.4.5 Organizing the Unit Test Documentation

Unit test documentation is composed of the Unit Test Plan and the Unit Test Summary Report.
These can be combined into one document. A proposed outline for each follow:

Unit Test Plan

1.
2.
3.
4.
5.
6.
7.
8.
9.

Project name
Software system name
Module name
Site(s) where the unit tests will be performed
For software runs in multiple modes, specify the modes used in testing
Names of persons preparing and approving the test procedures
Identification of test tools and drivers
List of any called modules which are stubbed and any drivers used
For each test case:

a. List of inputs including data name/location and value, hardware settings, etc.
b. List of expected outputs including data name/location, value, evaluation criteria
c. List of all breakpoints, snapshots, etc.

Unit Test Summary Report

1. Project name
2. Software system name
3. Module name
4. Date, site, and name of person performing tests
5. List or summary of test results
6. For test failures, corrective actions taken (code modification, reviews); list of retests; name,

7. Testing approval
site, and date of tests and test results

4.4.6 Reviews

4.4.6.1 Internal Reviews

Code reviews are conducted using the code walkthrough or code reading process. Code
walkthroughs are performed in a group with the developer of the unit describing or walking
through the code with other members of the development team. The objectives are to

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND UNITTEST PHASE 4.4- 15

investigate the internal correctness of the code and validate it against the detailed design.
Walkthroughs also serve as a mechanism to ensure that project-specific coding standards have
been followed. Walkthroughs are conducted in a thorough manner with presented material
reviewed line by line when necessary to improve quality and productivity through early
discovery of potential problems. Deficiencies found are noted in the unit’s SDF and must be
resolved before unit testing begins.

Code reading has the same objectives as the code walkthroughs. However, it is performed
individually by another member of the development team. The developer of a unit gives a
listing of the code to another member to read and review. Again, deficiencies are noted in the
unit‘s SDF and should be resolved by the developer before unit testing can begin.

4.4.6.2 Formal Review

Usually there is no formal review for the code and unit test phase of development. However,
the products of this phase, especially the informal test results, may be reviewed at the Test
Readiness Review (TRR) and should be retained in the SDFs.

4.4.7 Summary of the Code and Unit Test Phase

Inputs

Software Project Management
Activities

~~

Software Development Activities

Software Support Activities

Products

Reviews

Software Design Document (SDD)
Interface Design Document (IDD)
Software Module; and Software Sub-
system; Test Cases and Descriptions.
SDFs.
Software Test Plan (STPI
I r n
Resource Utilization Plan.
Requirements Traceability
Operations and Support Documents
- Computer Operators Manual
- Software User’s Manual
- Software Programmers Manual.

SDP
Risk Management
Estimation and Tracking

Coding of All Modules
Test of All modules at the Module Level

CM
QA

Tested Source Code
Code Walkthrough or Code Reading

Unit Test Results
Documentation Changes (e.g., specifica-
tion, design)
Detailed Integration Plan
Updated SDFs
SDL

Code Reading
Code Walkthroughs

Reports

Version 1 Hughes STX Proprietary

4.4-16 CODEANDUNITTESTPHASE Software Engineering Guidebook

4.4.8 Tailoring to a Small Project

Each project is unique. Tailoring the information provided in this section is essential in
defining and implementing the code and unit test function to a specific project. Regardless of
project size, the code and unit test function needs to be performed. Only the level of detail and
formality of the process and products vary among projects. Some of the factors to be
considered are:

Time

Resources

Complexity

Contractual commitments

Intended use of the product

If time and resources are very limited, at a minimum, you should adhere to the following
guidelines to allow your code to be more maintainable and extensible:

Decide on a naming convention for the functions, files, and modules in your project.

Identify a namespace for the modules in your project (Eg, Sr), and stick to it.

Organize your project into discrete modules based on functionality (e.g., QsStr for string

Make certain that every function has a prologue, explaining, at a minimum, what it does.

0 Provide adequate in-line comments in your code. This is the key to being able to easily

Use the code reading technique for all code. This is an effective and efficient means of

utilities, QsFile for file utilities).

maintain and extend your code.

detecting errors.

Perform unit testing on the most critical and complex code. Remember, time spent in unit
testing usually reduces the time necessary for integration testing, because errors are easier
to locate and retest.

4.4.9 Suggested Reference Material

Software Engineering Handbook, Build 3, Information System Division, Division 48, Hughes
Aircraft Company, March 1992.

Manager's Handbookfor Software Development, Revision 1, NASA, GSFC, Software Engineering
Laboratory Series, SEL-84-101, November 1990.

Recommended Approach to Software Development, Revision 3, NASA, GSFC, Software Engineering
Laboratory Series, SEL-81-305, June 1992.

Relevant Standards:

ANSI/IEEE Std 1008-1987-IEEE Standard for Software Unit Testing

ANSI/IEEE Std 829-1983-IEEE Standard for Software Test Documentation

DOD-STD-2167-Software Development

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND UNIT TEST PHASE 4.4- 17

Data Item Descriptions (DIDs):

- DI-MCCR-80027-Interface Design Document (IDD)

- DI-MCCR-80018--Computer System Operators Manual (CSOM)

- DI-MCCR-80012-Software Design Document (SDD)

- DI-MCCR-80021-Software Programmer’s Manual (SPM)

- DI-MCCR-8001!5-Software Test Description (STD)
- DI-MCCR-80019-Software User’s Manual (SUM)

DOD-STD-1703 (NS)-Software Product Standards

NASA-STD-2100-91-NASA Software Documentation Standard

4.4.9.1 Cited References

[ZSD48] Software Engineering Handbook, Build 3, Information System Division, Division 48,
Hughes Aircraft Company, March 1992, pp. 7-1-7-3.

4.4.10 Appendix

4.4.10.1 Coding Guidelines for C

4.4.10.1.1 Comments

In-line comment should occupy only one line, if possible, with the comment delimiters on that
line:

~

/* A good comment: */
some code;

Lengthy comments, whether prologues or long in-line comments, should use asterisks as their
left border. This allows the source code to be run through reformatters such as ”indent”
without destroying any formatting within the comment:

/*
* This is a long comment, possibly a portion * of a prologue. Separate paragraphs and * illustrations, like:
* : -)

* will be nicely preserved because of the
* asterisks forming the left margin.

*
*

*/
some code;

Version 1 Hughes STX Proprietary

4.4- 18 CODE AND Urn TEST PHASE Software Engineering Guidebook

Do not nest comments, even if your compiler allows it; comment nesting is not portable. Use
preprocessor directives to "comment out" code:

#if 0
/* The code to be commented out */

#endif
. . .

I 1

4.4.10.1.2 Naming Conventions

4.4.10.1.2.1 General

Use the mixed-case style, with a leading capital letter, for all names. For example, "Eg" might
be a project name, and "EgLog" a module under that project.

There are two principal reasons that we depart from the conventional
"lowercase-with-underscores" that is common in C:

Mixed case allows for the differentiation of words without having to add extra characters,
thus reducing typing and name length.

Underscores tend to break names up visually and may make them difficult to "parse" as a
unit. Mixed case keeps names as single "chunks."

Try to limit all module names to eight characters or less. This will ease typing and will allow
the files containing the source code associated with those modules to have names taken
directZy from the module name and yet still be transportable to DOS platforms. For example,
module "SrLog" might be contained in files "SrLog . h" and "SrLog . c," both of which are
legal filenames under DOS and minimal POSIX implementations.

Although objects with internal linkage (Le., objects with file scope declared to be "static")
are generally "private," care must be taken to avoid name clashes with other objects that have
external linkage because the results are undefined (ANSI C, 3.1.2.2). Therefore, it is probably
not a good idea to depart from these naming conventions, regardless of how "private" the
identifiers are.

4.4.10.1.2.2 Constants

Constant names should be composed of the module name followed by all capitals, preferably
without underscores. This sets constants apart from other entities, and loosely follows the C
coding convention of placing manifest constants in all CAPS.

For example: EgFileOK, EgFileENOTFOUND, EgFileMAXOPEN.

Where modules define many constants (return values, options flags, sizes), module authors
should use the first character or characters of the uppercase portion of the constant name to
underscore its purpose and minimize name clashes.

For example, consider these further partitions of the "EgFile" namespace:

EgFileO<ALLCAPS> "Ok" return values
EgFileE<ALLCAPS> "Error" return values

Version 1 Hughes STX Proprietary

S o h a r e Engineering Guidebook CODEANDU~TESTPHASE 4.4-19

EgFileW<ALLCAPS> ”Warning” return values
EgFileF<ALLCAPS> Options flags
EgFileMAX<ALLCAPS> Limits

4.4.10.1.2.3 Globals

Global variables names should consist of the module name, followed by a “G,” followed by
the remainder of the variable name in mixed case. This clearly identifies an object as a global
variable:

EgFileGNumOpen
EgFileGBuf

An inverted approach is not objectionable, but it loses some of the “up-front” quality:

EgFileNumOpenG
EgFileBufG

4.4.10.1.2.4 Types

Typenames created by “typedef” are entirely mixed case.

According to personal taste, typedefs associated with a module may end in a ‘9,” as dictated
by some conventional C coding styles: however, context usually serves to distinguish
typenames from other entities, and the trailing “T” may be more hindrance than help.

Here are possible types defined by the module ”EgFile,” in both styles:

EgFile EgFileT
EgFileInfo EgFileInfoT

4.4.10.1.2.5 Functions

Function names are simply mixed case, beginning with the module name. for example:

EgFileDeleteO
EgFileGetSizeO

4.4.10.1.2.6 Macros

There is a school of thought that macro names should always be obviously different from
function names, to avoid a case where side effects change the semantics of the code. For
example:

#define max(a,b) ((a) > (b) ? (a) : (b))

/* This would behave differently if max() were a function: */
x = 0;
y = 1;
z = max(++x, ++y);

1 I

Version 1 Hughes STX Proprietary

4.4-20 CODE AND urn TEST PHASE Software Engineering Guidebook

At your discretion you may give macros names composed of the module name followed by all
caps, with no underscores; this parallels the "all caps" convention for macro names.

4.4.10.1.3 Coding Style

4.4.10.1.3.1 General

Where possible, write code that complies with the established industry standards of ANSI C
and POSIX.

Write code that is as portable as possible within the scope of the intended use of the code.
Good software is often used on operating systems other than the one it was originally
intended for, so try to use conditional compilation constructs to ensure that your code can be
compiled and executed under:

Both ANSI and Classic C compilers, in addition to the C compiler you are using

UNIX, if you are not currently developing under UNIX

4.4.10.1.3.2 Conditional Compilation

Perform conditional compilation by uvuiZuble functionality, not by p l u t f m . You may have to
Mefine your own custom "switches" to do so:

I 1
/* A good way, using a custom "switch": */
if SrCCF-HAS-STDARG

#else

#endif

/* A bad way: */
#ifdef VAXllC

#else

#endif

extern int SrLog(char *func, char *code, char "fmt,...);

extern int SrLog();

extern int SrLog(char *func, char *code, char *fmt,...);

extern int SrLog();

When #defining conditional compilation switches, define them to a boolean true value (e.g., 1)
so that they may be used with either #if or #if def. Since the switches are more flexible, they
are easier to use correctly:

/* Compilation switch: are function prototypes supported? */
#if defined(-STDC-) I I defined(VAXC)
#define SrCCF-HAS-PROTOTYPES 1
#endif
. . .
/* Do something, based on whether or not we have prototypes: */
#if SrCCF-HAS-PROTOTYPES

#endif
. . .

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND UN~TEST FWASE 4.4-2 1

Try to place all of your #define'd conditional-compilation switches in a single project-wide
header file. This will make it easy for developers to consult the file to see if a switch is
available before writing their own.

4.4.10.1.3.3 Code Structure

Typically, a module x will consist of at least two files, X. c and X. h. Typically, X . h will
contain:

Definitions of preprocessor constants and macros needed by the users of the module.

Definitions of types needed by the users of the module.

"Extern" declarations of ALL global variables and functions accessible by users of the
module.

X.c will typically contain:

A #include of X. h. Even if unneeded, this is very useful in asserting that there are no
mismatches between the declarations in X . h and the objects in X . c .
Definitions of preprocessor constants and macros used privately by the module.

Definitions of types used privately by the module.

Declarations of global variables.

Definitions of functions.

Objects (functions and global variables) that are "private" to a " . c N file should be declared
"static."

4.4.10.1.3.4 Code Formatting

Try to indent using some conventional style: BSD, K&R, or the style supported by a language-
sensitive editor (Emacs C mode, LSE, etc.).

All binary arithmetic and logical operators (&, +, I I, ==, etc.) should be preceded and
followed by a space.

The assignment operator (':=I) should be preceded and followed by a space.

Precede "(" by either a "(" or a space, and never precede a ")" by a space.

Never precede a statement-terminating semicolon by a space.

In multiple-statement blocks bracketed by "{" and "I", place the opening { on the same line as
the statement introducing the block, and indent the closing I to the same column as that
statement. This collapses unnecessary vertical whitespace:

/* Good s t y l e : */
f o r (i = 0; i < n; i++) {

/* More good s t y l e : */
if (a [i] < a [n]) {
. . .

3
3

Version 1 Hughes STX Proprietary

4.4-22 CODE AND Urn TEST PHASE Software Engineering Guidebook

4.4.10.2 Checklists

The checklists provided in this section present a list of most of the issues that may need to be
reviewed. It may not always be necessary to address each of the items in the checklist. The
goal of providing these checklists is for you to be aware of all the issues, and for you to tailor
this checklist to your project by consciously eliminating the items you do not need.

Code Walkthrough Checklist

The following code walkthrough checklists are organized by types of errors that may occur.

1 YIN 1 Check I
I Are prologue and comments in accordance with software standards and procedures?

I Have only standard coding constructs been used?
~~ ~~

I I Does nesting of code comply with established standards?

I I Has direct code been used only when approved? I
I Does the size of the module comply with established standards?

I I Is there only one entry and one exit for each module? I
I I Has topdown format been used with concise statements and orderly development of logic? I

Is comment formatting correct?

Is the code in compliance with other coding standards?

Does the code do what the comments say it does?

I I Are all modules included and correct? I
1 Are all module call arguments consistent?

[Is the database properly used or set?

1 Are interrupts handled correctly?

I YIN I Check I
I Are data properly initialized?

Are data modules or scaling correct?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook CODE AND UNITTEST PHASE 4.4-23

YIN Check

Are logical operatordoperands correct?

Are logic activities in proper sequence?

Are the correct variables checked?

Are logic or condition tests missing?

I I Are loops separate, without erroneous interaction?

I I Is common code used when logic must be duplicated?

YIN Check

Is there proper referencing or storing of data?

-1 -Areflags orindexes used properly?

I Are bits manipulated correctly?

1 Are variable types correct? I
I Is data packing and unpacking done correctly? I
I Is subscripting used correctly? I

YIN Check

Are operatorsloperands in equations accurate?

Are sign conventions correct?

Are equations correct?

Is precision maintained in mixed-mode arithmetic?

Are all required computations present?

Is accuracy maintained during rounding or truncation?

Version 1 Hughes STX Proprietary

Sectibn 4.5

Integration and Testing
Phase

Contents

4.5.1 Introduction4. 5.1

4.5.2 General Methodology for Subsystem Integration and Testing4. 5.1
4.5.3 Reviews4. 5.3

4.5.4 Summary . 4 . 5-4
4.5.5 Tailoring to a Small Project4. 5.4

4.5.6 Suggested Reference Material4. 5.5

4.5.7 Appendix .. .4. 5-6

4.5.7.2 Sample Table of Contents4. 5-8

4.5.7.1 Checklists .. .4. 5-6

Version 1 Software Engineering Guidebook Hughes STX Proprietary

S O ~ A R E ENCINEEMNG GUIDEBOOK INEGRATION AND mSTINCi PHASE

Version 1 Hughes STX Proprietary

Software Engineering Guidebook INI-EGRATION AND TESTING W E 4.5- 1

4.5.1 Introduction

This section establishes engineering guidelines for software subsystem integration and the
subsequent testing generally known as integration testing, including subsystem integration
and testing, resource utilization monitoring, SDF maintenance, system test procedure
development, and formal review.

There is no formal dividing line between the coding and unit testing phase and this phase.
Rather, when the internal review process of the first several modules is completed and their
source code is placed into the SDL, personnel assigned to perform the integration can begin to
test them according to the integration and test plans. These individuals should be the senior
members of the development team; they are in a position to recognize and resolve integration
problems more expeditiously than any other group, thus reducing the cost and time needed
for integration testing with a potential savings in the later test phases. As more and more
software modules are available, they are added to the integration and test configuration. This
process continues until the complete software system build is available for system testing.

Integration is the process of aggregating system components into a specific version of the
system called a build, and ensuring that these components interact as designed. A system
can be composed of one or more subsystems, and a subsystem can be composed of one or
more threads. Subsystem integration consists of aggregating modules into threads, verifying
each thread according to an informal set of instructions and acceptance criteria, and finally
combining the threads to compose a subsystem. All the subsystems are then integrated into
the complete system, and each prepared version of the entire system released by development
is called a build. The steps in subsystem integration follow the subsystem ITP completed in
the detailed design phase.

There can be one or more builds during the development of a complete system. A build
normally coincides with a milestone in the software development schedule. A system may be
developed and released with only one build, or there may be many builds with additional
design and implementation occurring between each build resulting in significant system
changes between each build or with just minor problem corrections and enhancements
between each build.

4.5.2 General Methodology for Subsystem Integration and Testing

One or more methodologies can be used to define the integration and testing approach for the
software. When descriptions of methodologies are required, as in a proposal or SDP, it may be
appropriate to describe techniques such as when each subsystem will be integrated and how
and to include supporting activities and documentation such as project notebooks, document
review and control procedures, test standards, the corrective action process, and integration
notebooks, as well as test plans and procedures.

For subsystem integration and testing, a well-defined, disciplined approach should be
followed. This approach should be documented in the SDP. The general steps are:

1. Review the subsystem integration and test plans and procedures prior to actual integra-
tion and testing for test coverage completeness. The plan should describe integration pro-
cedures, test data sources and simulations, tests for resource utilization, and plans for
documenting problems and results. All interactions between subsystem threads and mod-
ules should be identified and included in the test plan. The plan may also allocate require-
ments to test cases.

Version 1 Hughes STX Proprietary

4.5-2 INI-EGRATION AND TESIING PHASE Software Engineering Guidebook

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

13.

Establish an integration and test intermediate baseline with the first fully integrated ver-
sion of the system for each defined build within the developmental CM environment,
which will provide for configuration accountability.
Aggregate the modules into threads. Test each thread in accordance with the test plans
and procedures. A thorough integration approach requires the testing of each possible
software path within each thread. However, cost and schedules will sometimes necessitate
testing essential and high-risk threads first, and then testing everything else on a time-
available basis.
Incorporate source code changes necessary to resolve problems found during thread test-
ing. The formal corrective action process may be bypassed during this phase if an infor-
mal developmental change control process has been established. On subsequent builds,
retest the affected software. Where necessary, make appropriate updates to the documen-
tation (including the software users manual(s) and software programming manual) to
reflect the software changes. Record all problems, corrective actions, and test results in the
SDFs.
Accumulate threads into one or more subsystems; these are then combined to compose
the entire system, with each version of the system called a build. The interfaces between
threads and later the interfaces between subsystems should all be identified and tested as
the system is being integrated. Aggregate the current build with all corrections and
enhancements introduced into any previous builds. For each build, develop a version
release report identifylng the enhancements and other differences from the previous
build.
Measure resource utilization for each of the budgets allocated in requirements analysis.
Verify the integrated implementation of allocated resource budgets using a documented
system load and (if applicable) a calibrated model. Report actual (predicted or measured)
vs. budgeted use in accordance with command media.
Test each build in accordance with the subsystem test plans developed during preliminary
design and the subsystem test cases and test procedures developed during detailed
design.
Incorporate source code changes that were necessary to resolve problems found during
subsystem integration testing. On subsequent builds, retest the affected software. Where
necessary, make appropriate updates to the documentation (including the software users
manual and software programming manual) to reflect the software changes. Record all
problems and corrective actions in the SDFs.
To record the history of the tests in a standard format, document subsystem test results in
a Software Test Report (STR) and enter them into the SDFs.
Maintain the SDFs so that all material is up to date.
For each build in the development schedule, conduct an Integration Test Readiness
Review (ITRR) at the end of the build integration test phase. The final ITRR will be con-
ducted after the last build has completed subsystem and system integration testing and
before system testing begins.

Continue subsystem testing until all subsystems for the system have been integrated and
tested. This includes interface testing between all subsystems that are part of the system.
Update (or support the update of) the final system test procedures for the system and doc-
ument them in the Software Test Description document. If required, submit the Software
Test Procedures to the customer for review.

[lSD481

Version 1 Hughes STX Proprietary

Soilware Engineering Guidebook INIXGRATION AND TESTING PHASE 4.5-3

4.5.2.1 Important Considerations for Subsystem Integration

The following items should be considered with any methodology:

Perform subsystem integration and testing in an environment that represents the target
hardware and software environment as closely as possible. Pay specific attention to
hardware/software switch settings and specific system environmental parameters
because these parameters can vary easily from site to site.

Implement a CM and Control System (CMCS) for the software prior to integration. This
system controls the addition of new software or changes to the integration system. When
more than one person is using the same set of software, it is essential to know the current
version and change status of each element (module and build). The system should also
control documentation so that it is updated, when required. It is highly recommended
that a CMCS be selected before implementation begins because it could have an impact on
the development environment.

Use a version description to identify the different versions of the modules and subsystems
of the software linked together for the release of a build. This description should identify
the hardware and commercial software revision levels, where possible.

Involve the system testers in the later part of the integration test phase to familiarize them
with and train them on any new or modified functionality. The system testers can also be
using their expertise to informally begin evaluating the integration tests and results.

4.5.3 Reviews

4.5.3.1 Internal Reviews

Internal reviews are used to provide early identification of potential problem areas and to
ensure that requirements and standards are met.

Appropriate internal reviews should be conducted to ensure that the walkthroughs, test
documents, and plans are complete and feasible and agree with the software implementation.
The best way to review test plans and procedures is to dry run the test procedures, making
corrections as necessary. Some contracts may require the procedures to be submitted before
there is an opportunity for a dry run. It can be beneficial when the customer recognizes that
there will be minor procedural changes, because it gives the customer an early opportunity to
comment on the procedures.

The subsystem integration test results, the SDFs, and all other products developed or
modified should be reviewed during this phase.

Prior to internal review of the system test procedure, a checklist (Refer to Section 4.5.8,
Appendixes) should be established and documented. At a minimum, the checklist should
address the technical adequacy criteria. Use this checklist to evaluate the system test
procedure.

All ITRRs should be prepared for and conducted. If opted, only the final ITRR is a formal
review and the earlier ITRRS can be internal, but this should be worked out with the customer.
All ITRRS should discuss the tests conducted, the results, schedules, resources, and any
problems still remaining in the system or any workarounds to be used.

Version 1 Hughes STX Proprietary

4.5-4 INIEGRATION AND TESTING PHASE Software Engineering Guidebook

4.5.3.2 Formal Reviews

Technically, a formal review is not always required to conclude this phase. However, it is
recommended that an ITRR be conducted at the end of each software builds integration
testing phase, and that at least the last build to be delivered has a formal review that precedes
formal system testing (the next phase) and could be considered the culmination of all the
former subsystem and system integration test phases. Integration test results are presented by
the developers with concurrence from the system testers and the software engineering team to
demonstrate to the customer that all software comprising the current build is ready for system
testing.

4.5.4 summary

inputs

Software Project Management
Activities

Software Development Activities

Software Support Activities

Products

Review

Master tapes (or other media) containing load subsystems
Hardware documentation (e.g., to determine how to set
hardware switches)
Software documentation (e.g., how to load, start, and
reinitialize the system)
Procedure on how to use integration/ debug tools
Software source listings
Declassification procedures for classified software
Version description document

Review test plans
Monitor test schedule
Track critical problems
Identrfy alternatives to high-risk solutions
Manage test resources (including personnel)

Prepare Ill's
Senior developers conduct integration testing
Development team resolves identified problems

CM
QA
Problem report documentation and tracking

Set of software that is ready for formal system testing
Reports of the integration activity
Corrective action system reports
Integration notebook
STR
SDFs
Operations and Support Documents
STPS
Version Description Document (VDD)

Tests and results presented by developers
* Remaining problems identified by developers

Workarounds described by developers
System readiness also analyzed by system testers

8.5.5 Tailoring to a Small Project

Each project is unique. Tailoring the information provided in this section is essential in
defining and implementing the integration test function to a specific project. Regardless of
project size, the integration test function needs to be performed. Only the level of detail and

Version 1 Hughes STX Proprietary

Software Engineering Guidebook IIWEGRATION AND TESTING ~ S E 4.5-5

formality of the process and products vary among projects. Some of the factors to be
considered are:

Time

Resources

Complexity

Contractual commitments

Intended use of the product

A large project may have several development cycles, each with one or more builds and with
each build comprising one or more subsystems. A small project may have only one
development cycle with only-one build. In both cases, project personnel should follow the
steps described in Section 4.5.3 because these steps are scalable for one or more builds.

4.5.6 Suggested Reference Material

Myers, Glenford, The Art of Software Testing, New York, Wiley-Interscience, 1979.

Mosley, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques, and
Tools for Assuring Quality Through Testing, New Jersey, Yourdon Press, 1993.

The following is a list of applicable standards to be followed during the subsystem integration
and test phase. The SDP should indicate which of the following standards will be followed.

DOD-STD-2167A-Software Development

MIL-STD-1521C-Technical Reviews and Audits

Data Item Descriptions (DIDs):

- DI-MCCR-80015-STD
- DI-MCCR-80017-SlX

DOD-STD-1703 (NSbSoftware Product Standards

NASA-STD-2100-91-NASA Software Documentation Standard Software Engineering
Program

NASA-DID-AOOO-Assurance and Test Procedures

NASA-DID-A2OO-Test Procedures

NASA-DID-R009-Test Report

4.5.6.1 Cited References

[ISD48] Software Engineering Handbook, Build 3, Division 48, Information System Division,

[LSD481 Software Engineering Handbook, Build 3, Appendix A.
Hughes Aircraft Company, March 1992, p. 8-2.

Version 1 Hughes STX Proprietary

4.5-6 INTEGRATION AND TESTING FXASE Software Engineering Guidebook

4.5.7 Appendix

4.5.7.1 Checklists

The checklists provided in this section present a list of most of the issues that may need to be
reviewed. It may not always be necessary to address each of the items in the checklist. The
goal of providing these checklists is for you to be aware of all the issues and for you to tailor
this checklist to your project by consciously eliminating the items you do not need.

These checklists can be used to assess the completeness and correctness of subsystem
integration test and the readiness for system test.

YIN Check

Is the source code:
correct?

Accurate?

Understandable?

Complete?

Testable?

Maintainable?

F G e c o d e comply to the project programming standards?

I Does the code meet the maintainability requirements?

I I Does the code fulfill the subsystem requirements?

I I Is the code consistent with the SDD and IDD?

I I Have the sizing resources been evaluated?

I I Have the timing allocations been evaluated?

Version 1 Hughes STX Proprietary

Software Engineering Guidebook INI-EGRATION AND TEWNG PHASE 4.5-7

YIN Check

Do the test results conform to the expected test results?

Do the test results show complete testing?

Are the test results internally consistent?

Are the test results understandable?

Have the anomalies been evaluated for severity?

Have the anomalies been evaluated for their effect on the subsystem?

Do the test results reflect the completeness of retesting, if any?

Is the subsystem ready to enter system testing?

YIN Chedc

Progress made

Technical adequacy of code

r
I System test approach

I Source code

I Module test results

I I Accomplishments of subsystem integration I
I I Requirements changes I
I I Design changes I
I I System test plans and descriptions I
I 1 System test procedures I
I I Subsystem integration test cases, procedures and results I
I 1 Test resources I
I I Test limitations I

Version 1 Hughes STX Proprietary

4.5-8 INTEGRATION AND TESTING PHASE Software Engineering Guidebook

4.5.7.2 Sample Tables of Contents

Below are several examples of the table of contents for an I". Selection of the most
appropriate test plan template depends on your customer and the desired level of formality

1 .O Test-plan Identifier
2.0 Introduction
3.0 Test Items
4.0 Functions To Be Tested
5.0 Functions Not To Be Tested
6.0 Approach
7.0 Item PasdFail Criteria
8.0 Suspension Criteria and Resumption Requirements
9.0 Test Deliverables
10.0 Testing Tasks
1 1 .O Environmental Needs
12.0 Responsibilities
13.0 Staffing and Training Needs
14.0 Schedule
15.0 Risks and Contingencies
16.0 Approvals

1 .O Introduction
2.0 Related Documentation
3.0 Test Identification and Objective
4.0 Procedures
5.0 Evaluation Criteria
6.0 Expected Results
7.0 Actual Results
8.0 Abbreviations and Acronyms
9.0 Glossary
10.0 Notes
1 1 .O Appendixes

Version 1 Hughes STX Proprietary

Software Engineering Guidebook INTEGRATIONANDTE~~NG PHASE 4.5-9

1 .O Introduction
a. Brief overview of the system
b. Document purpose and scope

2.0 Test Procedures
a. Test objectives-purpose, scope and level of testing
b. Testing guidelines-test activity assignments (i.e., who builds the executables and who conducts the tests), test

c. Evaluation criteria--guidelines to be used in determining the success or failure of a test (e.g., completion without
procedures, checklistdreport forms to be used, and CM procedures.

system errors, meets performance requirements, and produces expected results) and the scoring system to be
followed.

d. Error correction and retesting procedures, including discrepancy report forms to be completed.

3.0 Test Summary
a. Environment prerequisites-external data sets and computer resources required
b. Table summarizing the system or build tests to be performed.
c. Requirements trace ability-matrix mapping the requirements and functional specifications to one or more test

items.

4.0 Test Descriptions (items a-f are repeated for each test)
a. Test name
b. Purpose of the test-summary of the capabilities to be veriied
c. Methoktepby-step procedures for conducting the test
d. Test input
e. Expected results-description of the expected outcome
f. Actual results (added during the testing phase)-description of the observed results in comparison to the

expected results.

5.0 Regression Testing Descriptions (repeat items 4a-4f for each regression test)

Version 1 Hughes STX Proprietary

4.5- 10 I ~ G R A T I O N AND TESTING PHASE Software Engineering Guidebook

I .O Purpose and Scope
1.1 Relationship to Other Test Activities

LO Applicable Documents
2.1 Development Speckations
2.2 Standards
2.3 Other Publications

3.0 Integration and Test Identification

4.0 Resources Required
4.1 Personnel Requirements
4.2 FaciIiieslHardware
4.3 Interfacing6upport Software

5.0 Test Management
5.1 Integration Test Team Organization and Responsibilities
5.2 Responsibilities of Other Organizations
5.3 Product Control
5.4 Test Control
5.5 Evaluation and Retest Criteria
5.6 Test Reporting’
5.7 Test Review
5.8 Test Data Environment

6.0 Test Structure and Design
6.1 Test Levels
6.2 Test Approach
6.3 Test Inputs
6.4 Test CasedClasses of Tests
6.5 Test identification

7.0 Software Requirements To Be Satisfied Through Integration Testing
7.1 Software Requirements
7.2 Requirements Verification Traceability

8.0 Schedules

Version 1 Hughes STX Proprietary

Software Engineering Guidebook INTEGRATION AND T E S T T N G PHASE 4.5- 1 1

1 .O General
1.1 Purpose of the Test Plan
1.2 Project References
1.3 Terms and Abbreviations

2.0 Development Test Activity
2.1 Statement of Pretest Activity
2.2 Pretest Activity Results

3.0 Test Plan
3.1 System Description
3.2 Testing Schedule
3.3 First Location (Identify) Testing

3.3.1 Milestone Chart
3.3.2 Equipment Requirements
3.3.3 Software Requirements
3.3.4 Personnel Requirements
3.3.5 Orientation Plan
3.3.6 Test Materials

3.3.6.1 Deliverable Materials
3.3.6.2 Site Supplied Materials

3.3.7 Security
3.4 Second Location (Identify) Testing

4.0 Test Specification and Evaluation
4.1 Test Specification

4.1.1 Performance Requirements
4.1.2 System Functions
4.1.3 Test/ Function Relationships

4.2 Test Methods and Constraints
4.2.1 Test Conditions
4.2.2 Extent of Test
4.2.3 Data Recording
4.2.4 Test Constraints

4.3 Test Progression
4.4 Test Evaluation

4.4.1 Test Data Criteria
4.4.2 Test Data Reduction

5.0 Test (Identify) Description
5.1 Test Description
5.2 Test Control

5.2.1 Means of Control
5.2.2 Test Data

5.2.2.1 Input Data
5.2.2.2 Input Commands
5.2.2.3 Output Data
5.2.2.4 Output Notification

5.3 Test Procedures
5.3.1 Test Setup
5.3.2 Test Initialization
5.3.3 Test Steps
5.3.4 Test Termination

1 .O General
1.1 Introduction
1.2 Purpose
1.3 Criteria for Conducting Software System DT&E
1.4 Project References

2. Test Requirements and Acceptance Criteria

3.0 Test Descriptions
3.1 Classes of Tests
3.2 Test Case Structure

4.0 Software Requirementsmest Specification

5.0 Resources Required
5.1 Personnel Requirements
5.2 FacilitieslHardware
5.3 Support Software

6.0 Database for Software System DT&E

7.0 Test Management
7.1 Protocols

8.0 Customer Support Requirements

9.0 Software System DTBE Test Schedules
9.1 Master Test Activity Schedule
9.2 Activity Network for DT&E Testing

10.0 Software Modification and Retest Criteria

11.0 Notes

Version 1 Hughes STX Proprietary

Section 4.6

Systems Testing Phase

Contents

4.6.1 Introduction4. 6.1
4.6.2 General Methodology for Performing a Systems Test4. 6.2

4.6.4 Summary .. .4. 6.3
4.6.5 Tailoring to a Small Project4. 6.4
4.6.6 Suggested Reference Material4. 6.4
4.6.7 Appendix .. .4. 6.5

4.6.3 Reviews4. 6.3

4.6.7.1 Checklists .. .4. 6.5

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Software Engineering Guidebook %'jTEMSTESTlNG PHASE

Version 1 Hughes STX Proprietary

Software Engineering Guidebook SYSTEMSTESTING WE 4.6- 1

4.6.1 Introduction

This section establishes engineering guidelines for the system testing software development
phase. Within the HSTX methodology, system testing is generally defined as the testing that
replicates executing the functions that must be performed, and exercising the capabilities that
a system must have in the operational environment and in any interaction with the end users.
System testing is most effective when the end users and/or operations personnel are involved
in the testing. A system testing environment must replicate the operational and/or user
environment as much as possible. System testing activities include SDF maintenance, test plan
generation, system test execution, problem reporting, tracking and mitigation, and both
informal and formal reviews.

Prior to conducting system testing, the software developers who have completed the
integration testing should present an STRR (formal or informal). The STRR is attended by the
Independent Test Organization (ITO) that will be conducting the system testing. It should be
determined to the satisfaction of the Program Manager, QA, and the system test team that the
system has been fully integrated and is ready for system testing with all supporting files,
databases, and documentation in place.

The IT0 conducting the system testing should consist of a team of end users such as
operations personnel and/or scientists. The end user and operations personnel are usually
best able to determine whether the system will meet operational needs. Any detected
problems, inconsistencies, shortcomings, or misconceptions can be identified at this early
point and resolved by software developers in an expeditious manner. Operational problems
that are detected early in the test cycle can be resolved before putting the system through
extensive testing. This results in lower costs for the overall development process. This is
especially true if the system will then undergo a more formal testing cycle such as acceptance
testing, which is highly recommended. System testing demonstrates that the system satisfies
the following requirements:

The software supports the full range of operational capabilities required by the Software
Requirements Specification (SRS) and the Interface Requirements Specification (IRS); and
this should be demonstrable in an operational environment (or as close to an operational
environment as possible). If the full range of capabilities is to be provided over several
builds, then only the capabilities specified for each build should be tested.

The software satisfies performance requirements and operational and development
constraints; this should be demonstrable in an operational environment.

The software supports external interface requirements as verified in external testing.

The software supports Human-Machine Interface (HMI) and system control interfaces.

At the conclusion of system testing, an Acceptance Test Readiness Review (ATRR) will be
conducted by the system testing team for the customer and the acceptance testing team.
Successful conclusion of the review indicates customer concurrence that the system is ready
for acceptance testing.

This is the final phase of software development before acceptance testing. During this phase,
the principal activity for the software developers is to support IT0 personnel as they formally
test the system for compliance with requirements and its operability in an operational
environment. IT0 personnel have exclusive control over the system during system testing.

Version 1 Hughes STX Proprietary

4.6-2 SYSTEMS TESTING PHASE Software Engineering Guidebook

4.6.2 General Methodology for Performing a Systems Test

A well-defined, disciplined approach should be followed for system testing that should have
been documented in the SDP. The emphasis should be on testing the functionality of the
system as it will be used operationally. Most of the preparation is done well before the system
test phase begins by the IT0 rather than by the software development team. However,
software developers should understand the process, and may be requested to assist. It is very
valuable to have software developers review test procedures early in the process because most
requirements are subject to some degree of interpretation at lower levels. For system testing,
the general steps are:

1. Review the system test plan and procedures prior to actual testing for test coverage com-
pleteness. The plan should describe integration procedures, test data sources and simula-
tions, tests for resource utilization, and plans for documenting problems and results.
System tests plans are written against requirements and how the system should run or is
anticipated to run in an operational environment. The plan may also allocate require-
ments to test cases, but this is generaIIy done in acceptance testing.

copy of the software and building a system from it (compiling, linking, loading, etc.), as
well as establishing a hardware configuration. The IT0 must be assured that the software
under test is a stable system. At the successful conclusion of this phase, this baseline will
become the Product Baseline.

2. Establish and freeze a baseline configuration. This usually involves obtaining a source

3. Obtain approval of procedures and schedules. This is usually a cycle of procedure submit-
tal, customer comment, and revision. Approved procedures are required for a formal test.

4. Document and resolve any problems identified during the system test, must be docu-
mented and resolved in compliance with an established software change procedure that is
part of a defined configuration management plan (Le., no “on-the-fly changes” are
allowed!).

5. Perform the test with test and QA personnel, at a minimum. QA certifies the results of
each step and notes any deviations from or corrections to the procedure.

6. Conduct one or more briefings on test results with management, QA, and software devel-
opers. Review the results of the test. Discuss problems and potential solutions. Identify
problems in understanding or executing the system. In comparing test results, mark up
the official procedure to reflect the ”as-run” version (in theory, there should be no
changes, but there often are). Explain any anomalies (such as unexpected results or dis-
plays caused by operator error, unexpected timing, etc.) and determine the result of the
test as passed, conditionally passed, or failed. (A test may pass conditionally if data reduc-
tion results must be examined, or anomalies need to be explained.) If necessary, a retest
may be scheduled. A test could be rerun immediately, if a failure was caused by incorrect
switch setting or an incorrectly set parameter. The approaches chosen by developers may
affect test results. For example, if an SRS requires ”time-of-day” to be displayed on a
screen, a test procedure may specify that a test operator record that time at several points
during the test. However, the tester may assume that “time” is displayed to the nearest
second, while (absent any other requirement) the developer may have chosen to display it
to the nearest minute, which may not be adequate for operational purposes. A more com-
mon example is that a test procedure may specify that certain data be recorded for post-
test analysis, when there is no capability to record those data without modifying the soft-
ware under test. Document any problems that cannot be resolved with discussions and/
or input from the development team.

7. Issue one or more test reports with the results of the testing. The report usually includes a
list of documented problems, the marked up (and certified) test procedure, and other
results of the briefing.

[IS D48 J

Version 1 Hughes STX Proprietary

Software Engineering Guidebook SYSTEMSTEWING PHASE 4.6-3

4.6.3 Reviews

4.6.3.1 Internal Reviews

Internal reviews of the system testing of the software products developed are used to provide
early identification of potential problem areas and to ensure that requirements and standards
are met. Internal reviews take the form of informal discussions about test procedures and
results and possible solutions to problems. Early internal reviews should be conducted to
ensure that the test documentation and plans are feasible and agree with the software
implementation. Review the system testing results and the SDFs for all other software
products tested or modified during this phase.

4.6.4 Summary

Inputs

Software Project Manage
ment Activities

System provided by CM
0 Hardware documentation (e.g., to determine

0 Software documentation (e.g., how to load,

Procedure on how to use integration/ debug

0 Software source listings
Declassification procedures for classified

0 Version description document

how to set hardware switches)

start, and reinitialize the system)

tools

software

0 Review test plans and schedule
Monitor test progress

0 Track problems, identdy solutions to high-risk

Manage test resources, including personnel
problems

Software Development
Activities

Provide support to system testers
Resolve identified problems

0 Review test procedures
I

Software Support Activi- I 0 CM

I ties

..

0 Quality Assurance
10 IT0

Products

Review

Controlled, stable set of software
0 Reports of the integration activity.
0 Corrective action system reports
0 Software STR
0 SDFs

Operations and Support Documents
0 Software System Test Procedures
0 Software Product Specification (SPS)

Version Description Document (VDD)

0 Discuss results of tests
Identdy critical problems
Identify workarounds
Recommend promotion of system to
acceptance testing

Version 1 Hughes STX Proprietary

4.6-4 SYSTEMS TESI-ING PHASE Software Engineering Guidebook

4.6.5 Tailoring to a Small Project

Each project is unique. Tailoring the information provided in this section is essential in
defining and implementing the system test function to a specific project. Regardless of project
size, the system test function needs to be performed. Only the level of detail and formality of
the process and products vary among projects. Some of the factors to be considered are:

Time

Resources

Complexity

0 Contractual commitments

Intended use of the product

The reviews that are conducted for smaller projects may be very informal, involving a
gathering of only a few people in someone’s office. Discussions with developers may involve
visiting one or two people informally. With larger projects, reviews may involve teams of
people as with entire development groups. The level of formality should increase with the
number of people and the rigor of standards that to be applied on a project.

4.6.6 Suggested Reference Material

Myers, Glenford, The Art of Software Testing, New York, Wiley-Interscience, 1979.

Mosley, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques, and
Tools for Assuring Quality Through Testing, New Jersey, Yourdon Press, 1993.

The following is a list of applicable standards to be followed during the system test phase. The
STP should indicate which of the following standards will be followed.

DOD-STD-2167A-Software Development

MIL-STD-1521C-Technical Reviews and Audits

Data Item Descriptions (DIDs):

- DI-MCCR-8001SSTD
- DI-MCCR-80017-STR
DOD-STD-1703 (NS)-Software Product Standards

NASA-STD-2100-91-NASA Software Documentation Standard Software Engineering
Program

NASA-DID-A000-Assurance and Test Procedures

NASA-DID-A20&Test Procedures

NASA-DID-R009-Test Report

4.6.6.1 Cited References

[ISD48] Software Engineering Handbook, Build 3, Division 48, Information System Division -
Hughes Aircraft Company, March 1992, pp. 9-2-9-3.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook SYSTEMSTESTING PHASE 4.6-5

4.6.7 Appendix

4.6.7.1 Checklists

The checklists provided in this section present a list of most of the issues that may need to be
reviewed. It may not always be necessary to address each of the items in the checklist. The
goal of providing these checklists is for you to be aware of all the issues and for you to tailor
this checklist to your project by consciously eliminating the items you do not need.

These checklists can be used to assess the completeness and correctness of system test and the
readiness for customer acceptance.

Check

Are the test procedures adequately detailed?

Do the procedures specify:
Test inputs?
Expected results?
Evaluation criteria?

~~~~ 

Are  the  procedures  traceable  to  the  STP? 

Do the procedures  fulfill  all  the  requirements  of  the  STP? 

Are  the  procedures  consistent  with the SRS and IRS? 

Do the  test  procedures  show  that  the  system  correctly  implements  the  allocated  requirements?  At  a 
minimum: 

Compliant  with  design  requirements? 
Timing,  sizing,  and  accuracy  assessed? 
Performance  at  boundaries  and  interfaces  and  under  stress  and  error  conditions  checked? 
Test  coverage  and  software  reliability  and  maintainability  measured? 

I YIN I Check I 
Are  these  documents  consistent  with  each  other?  Are  they: 

Understandable? 
Technically  adequate? 
Presentable? 
Compliant  with  project  standards? 

Version 1 Hughes STX Proprietary 



4.6-6 SYSTEMS TESTING PHASE Software Engineering Guidebook 

Check 

Do the  test  results  conform to the  expected  test  results? 

Do the  test  results  show  completeness of testing? 

Are  the  test  results  internally  consistent? 

Are  the test results  understandable? 

Was the  severity of any  anomalies  and  their  effect  on  the  system  evaluated? 

Do the  test  results  show  completeness of retesting, if it was  necessary? 

Does the  system: 
Support  the full range of operational  capabilities  required  by  the SRS and 
IRS? 
Satisfy  performance  requirements  and  operational  and  development  con- 
straints? 
Support HMI and  system  control  interfaces? 
Support  external  interface  requirements? 

Version 1 Hughes STX Proprietary 



Section 4.7 

Acceptance Testing 
Phase 

Contents 

4.7.1 

4.7.2 

4.7.3 

4.7.4 

4.7.5 

Introduction ................................................. .4. 7.1 

General  Methodology for System  Acceptance  Testing .............. .4. 7.1 

Tailoring  to a Small  Project ..................................... .4. 7.1 

Suggested  Reference  Materia1 .................................. .4. 7.2 

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. 7-2 

4.7.5.1 Checklists ............................................ .4. 7-2 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Version 1 Hughes STX Proprietary 



Software Engineering Guidebook ACCEPTANCE TESTING PHASE 4.7- 1 

4.7.1 Introduction 

Acceptance testing is performed by a specialized IT0 dedicated to testing. The ITOs mission 
is to verify that all requirements specified  for  a system or a unique build of a system have been 
implemented. This verification is usually accomplished using a suite of very well-defined tests 
with all of the requirements to  be  verified mapped  into  the tests. Acceptance testing is very 
rigorous and formal. The system must  be  under CM control during the testing period. 
Problems encountered are documented, and usually a  project Configuration Control Board 
(CCB) will decide if the problem must be fixed before the system can be accepted. Any 
changes incorporated into the system will necessitate rerunning at least a designated core set 
of tests. Part of acceptance testing also involves one or more reviews to verify that  the  system 
hardware, software, and interfaces are complete and documented for operational installation. 
These reviews are the FCA,  PCA, and FQR. They can be combined for  convenience and 
efficiency. The readiness of the system to be promoted to an operational status is analyzed 
during these reviews. Test results and problems are discussed and decisions are  made by 
management on whether  or not  to promote the system. Some problems may be mitigated and 
not  prevent acceptance, while other problems may require resolution. The customer has  the 
final say on system acceptance based on current system status, the remaining system 
problems, and the mitigations that have been reached. An installation date is usually set for 
system promotion. 

4.7.2 General  Methodology  for System  Acceptance  Testing 

The FCA is a formal audit that validates that a configured system functions according to the 
specified requirements. The FCA ensures that  the collected test data verify that the configured 
system has achieved the performance specified and  that CM has maintained the configuration 
identification documents for each configured item. During  the FCA,  QA reviews and checks 
for accuracy and completeness the qualification test procedures, results, and  data for each 
configured item of the system. 

The PCA is  the formal examination of the ”as-built” version of the configured system. The 
system baseline is established for the accepted version of the system against its design 
documentation. The PCA for each configured item of a system is conducted at the successful 
conclusion of the configured item‘s  FCA. With the customer’s and operational team’s 
approval of the  product specifications and at the successful conclusion of the PCA, the 
product baseline is established. QA also reviews all of the operational and  support  documents 
(including the Operator‘s, User’s, and Diagnostics Manuals) during the PCA. 

QA reviews and checks the qualification test procedures for completeness and  the results for 
accuracy. Required documentation  and the performance of the entire system are also reviewed 
during the FQR. 

4.7.3 Tailoring to a Small  Project 

Each  project is unique. Tailoring the information provided in this section is essential in 
defining and  implementing the system’s acceptance testing function for  a  specific  project. 
Regardless of size, the acceptance testing function needs to be performed. Only the level of 
detail and formality of the process and products  vary  among projects.  Some of the factors to 
be considered are: 

Resources 

Version 1 Hughes STX Proprietary 



4.7-2 ACCEFTANCE TESTING PHASE Software Engineering Guidebook 

Complexity 

Contractual  commitments 

Intended use of the product 

Even on a  small  project  there  are  desirable steps to  follow  for  system  acceptance.  The  reviews 
described above can  be done on  an informal  basis  with  the  customer or users. 

List of materials to  be  reviewed. 

Documentation  checked  for  accuracy and completeness. 

Status of each  test  case. . 
Status of all known software  problems  documented and maintained in a  database. 

Is the implementation of the  Software  Design  consistent with the  requirements? 

Are  the  test  results  traceable? 

Are the test  results  summarized? 

J 

4.7.4 Suggested  Reference  Material 

Automatic Dependent Surveillance Conjiguration Management Plan, Aviation  System  Division 
(HSTX), 1991. 

Automatic Dependent Surveillance Quality Control Program Plan, Aviation  System  Division 
(HSTX), 1991. 

Pa&,  M.  C., B. Curtis, M. B. Chrissis,  and C. V. Weber, Capability Maturity Model for Software, 
Version 1.1, Software  Engineering  Institute,  Carnegie  Mellon  University, 1993. 

Software Engineering Handbook, Division 48, Information  Systems  Division,  Hughes  Aircraft 
Company, 1992. 

4.7.4.1 Cited  References 

[ED481 Software Engineering Handbook, Build 3, Division 48, Information  System  Division, 
Hughes Aircraft  Company,  March 1992. 

4.7.5 Appendix 

4.7.5.1 Checklists 

This section  presents  a  checklist  for  assessing the readiness of materials  for  a FQR. Most  of the 
issues that may  need  to be reviewed are listed.  It  may  not  always  be  necessary  to address each 
of the items in the  checklist.  The  goal of providing this  checklist  is  for you to be aware of all 
the issues to tailor  this  checklist  to your project  by  consciously  eliminating  the items you do 
not need. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook ACCEPTANCETESTING PHASE 4.7-3 

Y/N Check 

Were  the  schedule,  agenda,  and  list of materials to be reviewed  established in agreement  with  the  contracting 
agency? 

Was the documentation  prepared  for  the FQR checked  for  accuracy,  completeness,  consistency,  format,  and 
organization? 

I Was the status of each  test  procedure  reviewed  and  summarized? I 1 Are all known  software  discrepancies  documented in accordance  with  the  problem  reporting  system and ready for 1 
review? 

I 1 Are all test  limitations identied and documented? I 
I 1 Does  the  Software  Design  Document  (SDD)  reflect the exact  version of the  software  module? I 
I I Are the software  module  test  results  traceable to the  software  module  test  plan and test  procedures? I 

Are the software  module  test  results  summarized  relative to the  acceptance criteria specified in the  SoftwareTest 
Plan  (STP)? 

Version 1 Hughes STX Proprietary 



section 4.8 

Operations and 
Maintenance Phase 

Contents 

4.8.1 Introduction ................................................. .4. 8.1 
4.8.2 General  Methodology  for Operations and Maintenance ............ .4. 8.1 
4.8.3 Tailoring to a  Small  Project ..................................... .4. 8.3 
4.8.4 Suggested  Reference  Material .................................. .4. 8.4 
4.8.5 Appendix .................................................... .4. 8.5 

4.8.5.1  Checklists ............................................ .4. 8.5 
4.8.5.2 Sample Table  of Contents ............................... .4. 8.6 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software Engineering Guidebook OPERATIONS AND hrZAINTENANCE PHASE 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook OPERATIONSAND MAINTENANCE PHA~E 4.8- 1 

4.8.1 Introduction 

Operations and maintenance is that  part of the software lifecycle when the software is 
delivered and operational at the client site.  It is  important that changes made  during this 
phase of the software lifecycle do not adversely affect the operational software. Thus, software 
changes should be thoroughly tested in a test environment before they are incorporated into 
operations. Software changes should also be thoroughly regression tested so that original 
functionality is not degraded by new software. If the requested software changes include 
changes to the requirements, it may be desirable to perform all of the software lifecycle 
activities, beginning with requirements analysis. 

During the operations and maintenance phase, changes to the software (software code and/or 
software documentation) can be proposed by anyone involved with the software. This 
includes the customer(s), users, computer operations staff, development and maintenance 
contractor staff, and others. Proposed changes to the software fall into four categories: 

Corrective Maintenancdhanges to fix known deficienaes/errors 

Adaptive  Maintenance-changes necessary for the software to operate in a new or modified 
environment (e.g., different type of computer or peripherals, different or upgraded operating 
system) 

Perfective Maintenancdhanges to enhance the functionality of the software 

Performance Maintenancdhanges to improve the performance of the software 

A proposed change(s) is documented as either an ECR,  if the change necessitates a software 
requirements change, or a PTR. (See Glossary for different names of this report.) This begins 
the change process, which continues until the change is not accepted for implementation or a 
new release of the software, including the updated software code and documentation, is  made 
operational. 

An example of the steps in the change process is given in Figure 4.8.1-1. In this case, the 
customer identifies a problem that  does not lead to  a requirements change. 

The change process may result in repeating many of the activities performed during initial 
development of the software (Le., planning, requirements analysis, ..., system acceptance). 
Maintenance staff should refer  to the relevant sections for details and tailor these to their 
maintenance activities. 

4.8.2 General  Methodology  for  Operations  and  Maintenance 

Software maintenance usuaIIy involves repeating some of the same activities performed in the 
development phases. If SDFs are  used  during  the initial development, they can be very useful 
during the maintenance phase. Information in the SDFs provides a documentation history of 
all of the  modules in the system. Given below are  the  unique steps for software maintenance, 
including the activities of the software support staff (QA and CM). 

1. A problem database should  be established. Any operational problem or suggested 
improvement indicated by the customer should  be documented in the database. This 
database would contain both ECRs and PTRs. 

Version 1 Hughes STX Proprietary 



4.8-2 OPERATIONS AND MAINTENANCE WE Software Engineering Guidebook 

Customer or developer 
identifies a problem 

L PTRs and ECRs 
Problem Database 

Problem Analysis Control Board Configuration 

Software Design System Testing Operational System 

Software Coding Unit Testing 
1 I 

SWDG013 

Figure 4.8.1-1. The  change  process  may  result in repeating  many  of  the  activities 
performed  during  initial  development of the  software;  i.e.,  planning,  requirement 

analysis,  and  system  acceptance).  Maintenance staff should refer  to  the  prior  sections  for 
details  and  tailor  these  to  their  maintenance  activities. 

A unique identifier of the problem 

A one-line  abstract of the problem so that  the  problems  can be listed  on  a  page 

Priority of the problem 

Status of the problem 

Person that documented the original  problem 

Suspected  software module that needs to be corrected 

Date  the  problem was originally  documented 

Indication whether the  problem  is an ECR or PTR 
Detailed  problem  description 

Level of effort  required  to  resolve the problem 

Resolution of the problem  (summary  and  description) 

Author of the fix 

Date of  QA witness of fix test 

Pass or fail of fix by QA 

2. A CCB comprising  representatives  from  project  management, CM, QA, technical  leads, 
and the  customer should be  established.  The CCB determines  whether  problems  are  clas- 
sified as ECRs or PTRs. The  CCB also  determines  the  priority and scheduling of the  prob- 
lem  resolution. 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook OPERATIONS AND M A I ~ N A N C E  PHASE 4.8-3 

3. If an ECR involves a change in requirements, the lifecycle should begin with requirements 
analysis and requirements review and proceed through all the other lifecycle phases, end- 
ing at acceptance testing. 

4. It is CMs responsibility to ensure that problems are documented in the problem database. 

5. It is QA’s responsibility to make sure  that problems are tracked to  closure. 

6. Software developers are responsible for the problem analysis. If the analysis indicates that 
a  major design change is required to  fix the problem, it  may be desirable to bring the issue 
back  to the CCB to determine whether  the problem is  worth fixing. 

7. Software developers are responsible for designing the software fixes  for the problems. If 
the fix  for  a problem involves a large design change, it  may be desirable to have a design 
review with the customer.  The software developers may also be responsible for documen- 
tation changes to design documents and user’s manuals. 

8. The software developers are responsible for coding the software fixes  to the problems and 
for unit testing the fixes. 

9. A test team is responsible for system testing with  the fixes. This test team is also responsi- 
ble  for regression testing to verify that  the fixes do not degrade the functionality of the 
system. Depending on the customer’s requirements, this test team may assist in formal 
acceptance testing. 

10. CM  verifies that software baselines are maintained and  that fixes are  added to the baseline 
in a controlled manner. CM keeps track of what fixes are contained in what versions. If a 
fix causes a serious problem, it may be necessary  to revert to a previous version of soft- 
ware. CM is also responsible for version control of the software documentation. 

11. QA  verifies that procedures are followed and  that  the necessary documentation is com- 
pleted along with  the software changes. 

12. The CCB determines which software should be released with which software build. 

4.8.3 Tailoring to a Small Project 

On a small project most of the functions described above should still be done. At  a minimum, 
the following steps  are recommended: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

It is still important to document the problems in some  sort of database. 

The developer is responsible for tracking the problems to  closure. 

The priority of the problems must be agreed on between the developer and  the customer. 
In this case, the CCB might consist only of a developer and the customer. 

If software changes result in requirements changes, the requirements should  be docu- 
mented by the developer and reviewed with  the customer to ensure that  the requirements 
are  understood by both the developer and the customer. 
The developer is responsible for problem analysis. 

The developer is responsible for designing the software changes. If there are significant 
design changes, it may also be desirable to have an informal design review with  the cus- 
tomer before any software changes are made. 

The developer is responsible for coding the software changes and  unit testing the changes. 

On a small project the developer would be responsible for system testing in addition to 
the  unit testing described above. The developer would also be responsible for regression 
testing. 

The developer would also be responsible for maintaining baselines and controlling soft- 
ware versions. 

Version 1 Hughes STX Proprietary 



4.8-4 OPERATIONS AND ~~AINTENANCE PHASE Software Engineering Guidebook 

4.8.4 Suggested  Reference  Material 

Paulk, M. C., B. Curtis, M. B. Chrissis, and C. V. Weber, Capability  Maturity  Model  for Software, 
Version 2.2, Software  Engineering Institute, Carnegie  Mellon  University, 1993. 

Software Engineering  Handbook, Information  Systems  Division,  Division 48, Hughes Aircraft 
Company, 1992. 

4.8.5 Appendix 

4.8.5.1 Checklists 

The  checklists provided in this  section  present a list of most of the issues that  may  need  to  be 
reviewed.  It  may not always be  necessary  to address each of the items in the  checklist.  The 
goal of providing these  checklists is for  you to be aware of all the issues and for  you  to  tailor 
this checklist to your project  by  consciously eliminating the items you do not  need. 

Y/N Check 

Are  problems  being  recorded in the problem  database? 

Will the CCB determine the priority of the problem  and  determine  whether  it is a PTR or  an ECR? 

1 
~~ ____ ~~ ~ ~~~ 

If an ECR involves  a  change in requirements, will the  lifecycle  begin with requirements  analysis  and 
requirements  review  and  proceed  through all of  the  other  lifecycle  phases  ending  at  acceptance 
testing? 

~~ ~~ ~~ 

Are  software  developers  responsible  for  the  problem  analysis? 

Are  software  developers  responsible  for  designing the software  fixes to the  problems? 

If  the  fix  for  a  problem  involves  a  large  design  change, is there  a  design  review  with the customer? 

Are  the  software  developers  responsible  for d i n g  and  unit  testing the software  fixes to the  problems? 

Are  test  teams  responsible  for  system  testing? 

Version 1 Hughes STX Proprietary 



S o h e  Engineering Guidebook OPERA~ONS AND MAW~ENANCE PHASE 4.8-5 

4.8.5.2 Sample Tables of Contents 

a. Proposal  Identification 

b. Originator  Identification  Including 
1. Name and organization 
2. Address and phone 

c.  Product  (including  documents)  identification  including 
1. Name  or title 
2. Version  number 
3. If  applicable,  environment  information  (e.g.,  hardware  and 

operating  system  for  a  software  product) 

d. Proposal  information  including 
1. Title 
2. Date 
3. Classification (e.g., major  or  minor) 

4. Priority 
5. Description of proposed  change 
6. Recommendation  (if  any) 

e. Proposal  analysis  including 
1. Classification 
2. Resources  required to implement  change 
3. Effect  upon  operational  personnel  and  training 
4. Suggested  resolution 
5. Reference to associated  analysis 

f. Change  authority  including 
1. Disposition 
2. Resolution 
3. Implementation  schedule 
4. Authority  signature 

Version 1 Hughes STX Proprietary 



Section 5 

Software  Project 
Management 

Activities 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software Engineering Guidebook s o m m  PROJECT MA~XGEMENTACTIVITIES 5-iii 

Contents 

5.1 Software Project Management Planning ................................................................. 5.1-1 

5.2 Software  Development Planning ............................................................................. 5.2-1 

5.3 Software  Cost  Estimating .......................................................................................... 5.3-1 

5.4 Software  Metrics ......................................................................................................... 5.41 

5.5 Scheduling and Tracking .......................................................................................... 5.5-1 

5.6  Risk Management ...................................................................................................... 5.6-1 

5.7  Do’s for Project  Success ............................................................................................. 5.7-1 

5.8  Don’ts  for  Project  Success ......................................................................................... 5.8-1 

5.9 Danger  Signals and Corrective  Measures ............................................................... 5.9-1 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook S o m a  PROJECT M A N A G E M E N T A ~ E S  5- 1 

Managing a software project is one of the three major activities performed in the software 
lifecycle; the other two are software development/maintenance and software support (i.e., 
QA, CM). In concert with  the other two activities, managing a software project is  an ongoing 
activity throughout the software lifecycle. It begins in the planning phase  and continues 
through software retirement. 

The major software project management activities and  the subsections in which they are 
described are: 

Software Project Management Planning-Section 5.1 

Software Development Planning-Section 5.2 
Software Cost  Estimating-Section 5.3 
Software Metrics-Section 5.4 

Scheduling and Tracking-Section 5.5 
Risk Management-Section 5.6 

Many of these activities are initially performed during  the software planning phase, such  as 
planning, cost estimation, metrics definition, schedule generation, risk definition, and 
analysis. They are also performed on a periodic and as-needed basis throughout the 
subsequent phases. For instance, schedule and cost tracking and metnics  collection and 
analysis would be performed on a regular basis. Risk assessment and mitigation, 
rescheduling, recosting, and replanning would occur as a result of any of a variety of internal 
or external factors. These factors could include a better understanding of the problem, 
modifications to the contract, changes in funding  or delivery dates, or staff  or hardware 
availability problems. 

The last three subsections are tips for  project  success.  These include: 

Do’s for  Project  Success-Section 5.7 

Don’ts  for  Project  Success-Section 5.8 
Danger Signals and Corrective  Measures-Section 5.9 

Version 1 Hughes STX Proprietary 



Software  Project 
Management Planning 

Contents 

5.1.1 Introduction ................................................. .5. 1.1 
5.1.2 General  Methodology ......................................... .5. 1.1 
5.1.3  Tailoring  to a  Small  Project ..................................... .5. 1.2 
5.1.4 Suggested  Reference  Material .................................. .5. 1.3 
5.1.5 Appendixes .................................................. .5. 1.3 

5.1.5.1  Software  Project  Management  Planning  Checklists ......... .5. 1.3 
5.1.5.2  Tables of Contents ..................................... .5.  1.5 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software Engineering Guidebook SOFWARE PRCJECT MANAGE ME^ FUNNING 5.1 - 1 

5.1.1 Introduction 

This section describes the planning involved in preparing to manage a software 
development/maintenance project. This planning activity is performed during  the planning 
phase of the software lifecycle  or earlier during  the proposal and contract startup phase (these 
latter two  phases are not described in this document). Involvement by the software 
development/maintenance personnel and  the software support (QA, CM) personnel in the 
planning activities is necessary in developing a coordinated and realistic plan. 

Provides upper management with a  high-level summary of the 

Provides an integrated end-to-end view of the project, including 

Provides the basis for risk  assessment and the development of risk 

project 

work elements,  resources, schedule, and costs 

mitigation strategies 

Provides the customer with the same insight and progress 
monitoring ability 

Provides the software development/maintenance and software 
support (QA, CM) staff input and insight into the planning process 

Serves as a  vehicle for communication, understanding, and 
agreement among the software project  manager, software 
developers/maintainers, software support (QA, C M )  staff, other 
contractors, and  the customer 

Software project management planning culminates in the development of the Software Project 
Management Plan (SPMP). Whether or not the SPMP is a contractual deliverable, it  should 
nevertheless be produced. The SPMP documents  how  the software project manager plans to 
organize and manage the software development and/or maintenance project. Its focus is on 
the managerial aspects of the project, many of which impact the software development/ 
maintenance and software support (QA, CM) activities. The SPMP should contain the tasks to 
be completed, their associated time phasing, and resources necessary  to  meet the contractual 
or  internal organizational commitments. The plan  must clearly define the work that  is to be 
accomplished, the resources and schedules necessary to complete the work, and the 
management processes needed to direct, monitor, and track progress and costs as well as 
anticipate and respond to  problems. 

Project summary description 

Project organization and interfaces with the customer and other 

Managerial  processes, including monitoring and controlling 

Work elements, schedule, deliverables, and budget 

Resources, including staffing  plan,  facilities, and computational 

contractors 

mechanisms and risk management 

and support requirements 

5.1.2 General  Methodology 

The following describes the major steps in software project management planning. The order 
of the steps generally follows the contents in  the SPMP. Many of the steps will be repeated at 

Version 1 Hughes STX Proprietary 



5.1-2 s o m a  ~ ~ ~ J E C T  MANAGEMENT PLANNING Software Engineering Guidebook 

different  times  in  the  planning  process  in  order to  refine  the  estimates.  Details  for  cost 
estimation,  scheduling and schedule  tracking,  software  metrics, and risk  management 
methodologies  are  given in subsequent  sections.  Only  a  reference to  them  will  be  given. 

1. Write a  project  overview  including: 

a. The  goals and objectives of the  project 
b.  Background  information 
c. A general  description of the  work and the  deliverable  work products 

2. Describe  the  various  organizations  involved on the  project. 

a.  Describe  the  project’s  organization,  roles  and  responsibilities. 
b.  Define the  managerial  model  (hierarchical,  matrix) to  be  used. 
c.  Describe  the customer and users of the  software  system. 
d. Describe  the  customer and users’  organizations. 
e.  Describe  the  interfaces  between  the  project  organization and the  customers and users. 

3. Define  the  managerial  processes  used  to  manage  the  project. 

a. Define the  management  goals,  objectives,  and  priorities. 
b.  Define the  assumptions,  dependencies, and constraints. 
c. Describe  the  monitoring,  controlling  and  reporting  processes  (see  Sections 5.4 and 5.5) 
d. Describe  the  risk  management  activities (see Section 5.6). 
e.  Describe  the  staffing  plan. 

4. Define the  technical  processes  to  be  used  on  the  project. 

a. Define the  managerial and technical  methods,  tools, and techniques  to be used. 
b.  Describe  the site specific  technical  information. 

5. Define the  work  elements,  schedule, and budget. 

a. Define the  work  packages,  deliverables, and dependencies. 
b.  Define  the schedule (see  Section 5.5). 
c.  Define  the required  resources. 
d. Define the budget and resource  allocations (see Section 5.3). 

5.1.3 Tailoring to a Small Project 

Each  project is unique.  Tailoring the information  provided in this  section  is  essential in 
defining and implementing the software  project  management  planning  function  for  a  specific 
project.  Regardless of size, the software  project  management  planning  function needs to  be 
performed. Only the  level of detail and formality of the  process and products vary  among 
projects. 

Steps in tailoring the software  project  management  planning  function  include the following: 

1. Review  the  box entitled ”Essential  Information  in  the SPMP.” 

3. Review and note  applicable  information  from  the  software  development  planning,  cost 
estimation,  metrics, scheduling and tracking, and risk  management  sections. 

4. Develop an annotated outline for  the SPMP. Decide  whether this document should be 
combined  with other planning documents  (e.&  the  Software  Development  Plan [SDP]). 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWARE PROJECT MANAGEMENT P~ANNING 5.1-3 

5. Write  a draft SPMP and have it  reviewed  by other software managers, developers/ 
maintainers, and software support staff who will work on the project. 

6. Revise the SPMP. 

5.1.4 Suggested  Reference  Material 

Fairley,  Richard E., “A Guide for Preparing Software Project Management Plans,” l E E E  
Tutorial: Software Engineering Project Management, Richard  H.  Thayer, Computer Society Press 
of the IEEE, 1988, pp. 257-264. 

“IEEE Standard for Software Project Management Plans,”  IEEE-STD-1058.1,  ANSI/IEEE  Std 
1051.1-1987, December 1987. 

Automatic Dependent Surveillance (ADS)  Project Management Plan, Hughes STX Corp., 
August 1991. 

Softwure Engineering Handbook, Build 3, Division 48, Information Systems Division, Hughes 
Aircraft  Company, 1992. 

Work Control Plan,  NASA  Space and Earth Sciences Contract, Technical Applications Group, 
Hughes STX Corp. 

Program Management Plan, Data  Item Description, Backgrounds Data Center Contract, Naval 
Research  Laboratory. 

5.1.5 Appendixes 

5.1.5.1 Software  Project  Management  Planning  Checklists 

YIN  Check 

Have  the  schedules been constructed  at  the  appropriate  level of detail? 

Have  software  schedules  been  coordinated  with  other  schedules  (such  as  hardware  delivery,  training,  CM, QA)? 

Has  the critical path been identified? 

Have  project-specific  standards  for  software  schedules been established? 

Have  dates  for  deliverables  and  customer  reviews been establishedlplanned? 

Are  any  prototypes  or  models  planned  early  enough to provide  useful  results? 

YIN  Check 

Has  the initial organization  been  devised? 

I I Have  staffing  levels been projected  and  compared to the  budget? I 

Version 1 Hughes STX Proprietary 



5.1-4 s o m m  P R ~ J E C T  MANAGEME~V~ FUNNING Software Engineering Guidebook 

I I Have  commitments  been  received  from  key  personnel? I 
-&ere aplan to  acquire  the  remaining  staff  at  the  appropriate  times? 

i de&n  team  of  senior-level  staff  been  established/planned? 
~~ ~ 

Has  a  training  plan  been  established? 
~~ 

1 Y N  I Check I 
I Has  the  usage  of  a  development  facility  been  estimated? I 

I I Have  adequate  development  facilities  been  planned  (whether  company-owned, borrowed, onsite,  etc.) I 
Has  the  development  system  (hardware  and  software  such  as  editors,  compilers,  debuggers,  and CM tools) been 
exercised to determine  that  software  can  successfully  be  developed? 

Have  arrangements  been  made  for  any securii requirements? 

YIN Check 

Have  document  deliveries  been  coordinated  with  supporting  organizations (QA, CM, reproduction)? 

Has  acquisition of COTS items  been  coordinated  with  the  Purchasing  Department? 

Have  regular  meetings  been  established with necessary  parties  (including  superiors)? 

Is there  a  plan  for  disseminating  information  within  the  project  staff  (staff  meetings,  email,  bulletin  boards,  newslet- 
ters)? 1 ~~ ~ ~~ ~~ ~ - ~ ~~~~ ~~ 

I Has  a  risk  management  plan  been  developed  and  implemented? I 
I Has  the  proposal  been  reviewed for commitments  regarding  software  methodology,  products,  and  schedules? 1 

I I Has  a  set  of  metrics  been  established to measure  technical  performance? I 
1 Has  a  set  of  metrics  been  established  to  measure  progress? 

~~ ~ ~ ~ ~ ~~ ~~ 

For  each  metric,  has  a  collection  plan  and  thresholdexpected  value  been  established? 

Have  reporting  methods  and  formats  (from  subordinates to superiors)  been  established? 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWAFE PROJECT MANAGE ME^ PLANNING 5.1-5 

5.1.5.2 Tables  of  Contents 

Version 1 Hughes STX Proprietary 



Section 5.2 

Software Development 
Planning 

Contents 

................................................. 5.2.1 Introduction .5. 2.1 
5.2.2 General  Methodology ......................................... .5. 2.1 
5.2.3 Tailoring to a  Small  Project ..................................... .5. 2.5 
5.2.4 Suggested  Reference  Material .................................. .5. 2.5 

5.2.5 Appendixes .................................................. .5. 2.6 
5.2.5.1 Checklists .5. 2.6 ............................................ 
5.2.5.2 Tables of Contents ..................................... .5. 2.6 

Version 1 Software  Engineering  Guidebook  Hughes STX Proprietary 



S o h e  Engineering  Guidebook SOFWARE DEVELOPME~T FUNNING 5.2- 1 

5.2.1 Introduction 

This section describes the activities involved in  planning for software development. This 
planning activity is performed during the planning phase of the software lifecycle or earlier 
during  the proposal and contract startup phase (these latter two phases are not described in 
this document). Involvement by the software development/maintenance personnel and  the 
software support (QA, CM) personnel in the planning activities is necessary in developing a 
coordinated and realistic plan. 

Provides an early understanding of how the software will be developed 

Provides a detailed plan for software development before development 

Raises questions early in the lifecycle regarding development approaches, 
procedures, etc. 

Provides the software development/maintenance and software support 
(QA, CM) staff input into the planning process 

Serves as a  vehicle  for communication, understanding, and agreement 
among software project  manager, software developers/maintainers, 
software support (QA, CM) staff, other contractors, and the customer 

for each phase of development 

begins 

I 

Software development planning culminates in the development of the SDP. Whether or not 
the SDP is a contractual deliverable, it  should nevertheless be produced. The SDP documents 
how the software will be developed. Its focus is  on  the technical development aspects of the 
project, including  both software development and software support (QA, CM) activities. The 
SDP describes the lifecycle model representing the development phases and contains the 
methods and procedures to be implemented and followed by software development and 
software support staff for each phase of development. It lays out  the development schedule, 
indicating development and software support activities and milestones, contractual and 
informal reviews, and software deliveries. In essence, it  is the road map for software 
development. 

Project summary description 

0 Software lifecycle model indicating development phases, reviews, 

Software development and software support (QA, CM) functions and 

Descriptions of both development and software support (QA, CM) 

and deliverables 

organizations 

methods and procedures for each phase 

The SDP should  be viewed as a working document. That is, as the work becomes  clarified, 
better approaches chosen,  etc., the SDP should be updated to  reflect those changes. Such 
changes may occur during  any of the software lifecycle phases. 

5.2.2 General Methodology 

The following describes the major steps in  software development planning. 

Version 1 Hughes STX Proprietary 



5.2-2 SOFIWARE DEVELOPMENT PLANN~NC Software Engineering Guidebook 

Software  Development  Scope 

1. Write a  system  overview  (a  system  context  diagram  may  prove  useful)  including: 

a.  The  general nature of the  system  and  software 
b. S u m m a r y  of the  history of system  development,  operation, and maintenance 
c.  Identification of the project  sponsor,  user,  developer, and support agencies 
d. Identification of the current and planned  operating  sites 

Software Development Planning-General 

2. Write an overview of the work  to  be  accomplished  including: 

a.  The  system and software  to  be  developed 
b.  The documentation  required 
c. Overview of the  system  lifecycle and the  position of the project  within that lifecycle 
d. The software  lifecycle  model  to be used 
e.  Project  schedules and resources 
f. Other  aspects of the project,  such as security,  privacy,  methods, standards to  be 

followed, and testing  constraints 

3. Define the overall  software  development  process  to be used,  including: 

a. The  lifecycle  model  for  software  devlopment, including phases,  products,  reviews, 

b. A mapping of the  activities  required  by  contract  provisions onto that portion of the 
and deliverables. 

software lifecycle  model. 

4. Define the  general plans for  software  engineering,  including: 

a.  The  software  development  methodologies to  be  used,  by  phase, including the  tools 

b.  The approach to be followed  for  identifymg,  evaluating, and incorporating COTS and 

c. The approach  to  be  followed  for  safety  analysis. 

and procedures to  be used in support of these  methods. 

reusable  software. 

5. Define the  general plans for  software  testing,  including: 

a.  The  testing  methodologies to be used  by  phase,  including the tools and procedures  to 

b.  The approach for  planning,  conducting,  evaluating  tests and responding to test 

c.  Achieving  the  required  level of independence,  including  testing on the target 

be used  to support these  methods. 

failure. 

computer  system  or an equivalent  system. 

Software Development Planning-Details 

6. Define the  approach  to  be  followed  for  subsequent  planning,  including: 

a.  Further  development of this SDP. 
b. Planning of the software  system and software  system  integration  testing. 
c.  Performance of or  participation in planning  system  testing. 
d. Planning  for  transition  to  software support. 
e. Planning  for  software  installation and training at user  sites. 

7. Define the  approach  to be followed  for  establishing,  controlling, and maintaining  a 
software  development  environment,  including  descriptions of 

a.  The  software  engineering  environment. 
b.  The software  test  environment. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWARE DEVELOPMENT PLANNING 5.2-3 

c.  The Software Development Library  (SDL) 
d. The Software Development Files  (SDFs) 
e.  Design and coding standards to  be used 
f. Nondeliverable software to be used 
g. Any other software standards  and procedures to be used 

8. Define the approach to  be  followed  for performing or participating in system 
requirements analysis, including: 

a. Analyzing user input 
b.  Defining the operational concept 
c. Defining the system requirements 

9. Define the approach to be followed  for performing or participating in system design 
analysis, including: 

a. Developing the system behavioral design 
b. Developing the system architectural design 

10. Define the  approach to be followed  for software requirements analysis, including: 

a. Defining the software system engineering (and corresponding qualification) 

b. Defining the software system interface (and corresponding qualification) 
requirements 

requirements 

11. Define the  approach to be followed for performing software architectural design, 
including: 

a. Developing the software system behavioral design 
b. Developing the software system architectural design 
c. Developing the database logical design 

12. Define the  approach to be followed  for performing software detailed design, including: 

a. Developing the software system detailed design 
b. Developing the software system interface design 
c. Developing the database physical design 

13. Define the  approach to be followed for coding and  unit testing including the 
programming language(s) to  be used, including: 

a. Coding software units 
b. Populating those databases to be populated as  part of software development 
c. Preparing for unit testing 
d. Performing unit testin 
e. Revising and retesting based on test results 
f. Recording unit test results 

14. Define the  approach to be followed  for software subsystem integration and testing, 
including: 

a. Preparing test cases and test data (possible use of simulators) 
b. Preparing test procedures 
c. Performing dry runs of test procedures 
d. Performing software subsystem integration and testing 
e. Revising and retesting based on test results 
f. Analyzing and recording software subsystem integration and test results 
g. Updating  software subsystem integration and test cases and procedures 

Version 1 Hughes STX Proprietary 



5.2-4 s o m a  DEVELOPMENT PLANNING Software Engineering Guidebook 

15. Define  the  approach  to  be  followed  for  software  system  testing,  including the same  items 
as  for  software  subsystem  integration  and  test. 

16. Define the  approach  to be  followed  for  performing  or  participating in system  acceptance 
testing,  including  the  same  items as for  software  subsystem  integration and test, plus 
customer-witnessed  testing. 

17. Define  the  approach  to  be  followed  for preparing for software  use and support, including: 

a.  Developing  software  users and maintenance  manuals 
b.  Developing  computer  system  operator  manuals 
c. Performing  installation and training at user sites 
d. Transitioning  software  and  environments  to  the  designated support site 

18. Define  the  approach  to  be  followed  for preparing for  software  delivery,  including: 

a.  Preparing  executable  code  for  delivery 
b. Preparing  source  code  for  delivery 
c. Developing  software  product  specifications 
d. Developing  version  descriptions 
e. Supporting Functional  Configuration  Audit(s) (FCA) 
f. Supporting  Physical  Configuration Audit(s) (PCA) 

19. Define  the  approach  to be followed  for performing software  process and product 
evaluations  (or  reference  the QA plan), including: 

a.  Performing  in-process  software  process and product  evaluations 
b.  Performing  final  software product evaluations 

20. Define  the  approach  to  be  followed  for  performing  software CM (or reference  the CM 
plan),  including: 

a.  Configuration  identification,  control, status, and audits of development products 
b. Interface with customer CM, including: 

1) Supporting the baselining of specifications 
2) Using  ECPs/ECRs 
3) Configuration status accounting, including the  format,  content, and purpose of 

reports to be used 
c.  Storage,  handling, and delivery of project  media 

21. Define  the  approach  to  be  followed  for  performing  corrective  action and process 
improvements. 

22. Define  the  approach to be  followed  for  holding  joint  (customer/contractor)  reviews. 

Software Development  Planning-Schedules 

23. Define  the  schedules  for  the  project  (or  reference  the SPMP), including: 

a.  Schedule(s)  identifymg  the  activities in each  build and showing initiation of each 
activity,  availability of draft and final  deliverables and other  milestones, and 
completion of each  activity 

dependencies among activities and identifymg  those  activities  that  impose  the 
greatest  time  restrictions on the  project 

b.  An activity  network (e.g.,  PERT chart), depicting  sequential  relationships and 

Software Development Planning-Project Organization and Resources 

24. Define  the  project  organization and resources  (or  reference  the SPMP), including: 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook s o m m  DEVELOP ME^ PLANNING 5.2-5 

a. The organizational structure to  be used on the project, including the organizations 
involved, their relationships to  one another, and  the  authority  and responsibility of 
each organization for carrying out required activities 

b. The resources to be applied to the project, including: 
1) Personnel resources 
2) Overview of contractor facilities to be used 
3) Customer-furnished items,  facilities required, and  dates needed 
4) Training needs 
5) Other required resources,  a plan for obtaining them, and need/availability dates 

5.2.3 Tailoring to a Small Project 

Each  project is unique. Tailoring the information provided in this section is essential in 
defining and implementing  the software development planning function for a  specific  project. 
Regardless of size, the software development planning function needs to be performed. Only 
the level of detail and formality of the process and  products vary among projects. 

Steps in tailoring the  software development planning function include  the following: 

1. 

2. 

3. 

4. 

5. 

Review the box entitled "Essential Information in  the SDP" and note how these will apply 
to your project. 

Review the "General Methodology" steps  and  note  what  is applicable and  how  it will be 
applied to your project. 

Write  a draft SDP. Tips: a) Use  references  to other documents (e.g., SPMP) rather than 
duplicating the material, b) possibly combine documents  such as the SPMP and SDP, 
addressing only the applicable information, and c) use TBDs only for sections that you 
actually intend to update  in the future. 

Have  developers/maintainers  and software support (QA,  CM) personnel review and 
comment on  the  draft SDP. 

Update  and finalize the  written SDP after consensus is reached by the software manager, 
developers/maintainers, and software support staff. 

5.2.4 Suggested  Reference  Material 

"IEEE Standard for Software Development Plans," IEEE-STD-1058.1,  ANSI/IEEE Std 1051.1- 
1987,  December  1987. 

Automatic Dependent Surveillance (ADS) Development Plan, Hughes STX Corp., August 
1991 

Soffwure Engineering Handbook, Build 3, Division 48, Information Systems Division, Hughes 
Aircraft  Company,  1992. 

Version 1 Hughes STX Proprietary 



5.2-6 SOFIWARE DEVELOPMENT PLANNING Software Engineering Guidebook 

5.2.5 Appendixes 

5.2.5.1 Checklists 

I YIN I Check I 
Have  methodologies  been  selected  for  requirements  analysis  and  preliminary  and  detailed  design? 

Have projectspecific coding  standards  been  documented? 

Has  a  procedure  for  walkthrough  been  established? 

Has  a  procedure  for  action  items  been  established? 

Has  a  Software  CM  Board  (or  equivalent)  been  established to provide  software  review  of  requirements  changes 
and  problem  reports? 

5.2.5.2 Tables of Contents 

1.0 scope 
1.1 Identification 
1.2 Purpose 
1.3 Introduction 

2.0  Referenced  Documents 
2.1  Government  Documents 
2.2  Non-Government  Documents 
2.3  Other  Publications 

3.0  Resources  and  Organization 
3.1  Project  Resources 
3.2  Software  Development 
3.3 Software  Configuration  Management 
3.4  Software  Quality  Evaluation 
3.5  Other  Software  Development  Functions 

4.0  Development  Schedule  and  Milestones 
4.1 Activities 
4.2  Activity  Network 
4.3 Procedures  for  Risk  Management 
4.4  Identification  of  High-Risk  Areas 

5.0 Software  Development  Procedures 
5.1  Software  Standards  and  Procedures 
5.2 Software  Configuration  Management 
5.3 Software  Quality  Evaluation 
5.4 Additional  Software  Development  Procedures 
5.5 Commercially  Available,  Reusable,  and 

Government-Furnished  Software 
5.6  Data  Rights  and  Documentation 
5.7 Nondeliverable  Software,  Firmware,  and  Hardware  Controls 
5.8 Software  Developed  for  Hardware  Configuration  Items 
5.9 Installation  and  Checkout 
5.10  Interface  Management 

6.0  Notes 
6.1 Abbreviations  and  Acronyms 
6.2  Glossary 
6.3  Changes  Since Last Delivery 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFWJARE DEVELOPMENTPLANN~NG 5.2-7 

2.0 Referenced  Documents 

3.0 Software  development  planning 
3.1 Overview  of  the work to be done 
3.2 General  requirements 
3.3 Detailed  requirements 
3.4 Schedules 
3.5 Project  organization  and  resources 

4.0  Software  Installation  Planning 
4.1 Installation  overview 
4.2 Site  information  for  computer  operations  personnel 

4.2.x (Site  name) 
4.3  Site  information  for  user  personnel 

4.3.x (Site  name) 

5.0 Software  Support  Planning 
5.1 Software  support  resources 
5.2 Recommended  procedures 
5.3 Training 
5.4 Anticipated  areas of change 
5.5 Transition  planning 

6.0 Notes 

Appendixes 

Version 1 Hughes STX Proprietary 



Section 5.3 

Software Cost Estimamg 

Contents 

5.3.1 General  Procedure  for  Cost  Estimating .......................... .5. 3.1 
5.3.2 Detailed  Procedure ........................................... .5. 3.1 
5.3.3 Estimating  Contingencies ...................................... .5. 3.9 
5.3.4 Cited  References .............................................. .5. 3.9 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



5.3- 1 SOFIWARE COST ESTIMATING Software Engineering Guidebook 

This section presents guidelines for estimating the size,  cost, and schedule of software 
development projects. Figures 5.3.1-1 and 5.3.1-2 are process flow diagrams for determining 
software costs and schedule. Figure 5.3.1-3 illustrates a  process  flow  for determining software 
size. The information in this section was derived from that illustration. 

~ ~ 

Note:  All  written estimates of labor, costs,  size, and schedules, including rough estimates, normally require approval of an 
HSTX department manager or above before they can be given to a  customer  or another contractor. 

5.3.1 General  Procedure  for Cost Estimating 

Estimating the size,  cost, and schedule for software development projects should follow  a 
well-defined, systematic approach  that  provides an uuditul.de trail from beginning to end. This 
is especially important on proposal efforts that require a basis of estimate for the software 
development costs.  At the outset of the estimating process, establish a mechanism for tracking 
and saving (CM) the  various estimation products. Bidding and marketing strategies are not 
included; they are beyond the scope of this guidebook. 

The output of the software estimation activity is the cost of all efforts necessary  to perform the 
software development. The software estimation process consists of the following ordered 
activities: 

1. Develop a system design. 

2. Define the size of the software system. 

3. Define the environmental factors (these are  the cost factors that  are  input to  a  cost). 

4. Execute the software costing model(s). 

5. Develop a  project estimate. 

6. Perform risk analysis. 

7. Develop a  project bid. 

8. Perform dynamic cost projection. 

Each of these steps  is explained in the next section. 

5.3.2 Detailed  Procedure 

The following steps detail the procedures for  cost estimating: 

1. Develop  a system design. The following are the steps for the system design phase of cost 
estimation: 

a. Form  a proposal team. The proposal/design team should include a program/project 
manager, systems engineers, hardware engineers (when necessary), independent test, and 
software engineers. To provide a  mix of experience and viewpoints, inclusion of at least 
three software engineers, of whom two have  had prior software estimation experience, is 
recommended. 

Note: This procedure is designed for estimating large projects. Smaller projects m y  call for fewer people. You should always 
have at least two people on the team,  to trade ideas. 

Version 1 Hughes STX Proprietary 

http://uuditul.de


S o h e  Engineering Guidebook SOFTWARE COST ESTIMATING 5.3-2 - _. s 

RFP 
Request 

for 
Proposal 

Documentation 
SDFs, SDL 
Metr ia reporting 

HOL 
Use  of  requirements  trace  ability 

SMT Desi n Table 
CSCl bfo: 

Functions 
Similar Existing Modules 
Reuse Data 

Design-to- 
constramt 
feedback 

-@ 
’ Or  reduce 
“additional” 
S/W 
efforts 

Figure 5.3.1-1. Software  Cost  Estimation  Process  (Page 1 of 2) 
tISD481 

Version 1 Hughes STX  Proprietary 



5.3-3 SOFIWARE COST ESTIMATING Software Engineering Guidebook 

IlSD481 
Figure 5.3.1-2. Software Cost  Estimation Process  (Page 2 of 2) 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWARE COST E ~ M A T T N G  5.3-4 

RFP 
Request 

for High-Level 
Proposal  Architecture 4 

Group Meeting 

Experts discuss 
estimation p e s  with 
the coordmator and 

with each  other 

Similar Existing Modules 

4 
Experts  give  estimation 
form(s) to coordlnator 

4 
results (anonymity 

Experts fill out forms 
discuss results 

4 
Estimates  are  revised 

\ 

Uncertainty 

b. 

C. 

d. 

e. 

SWDG014 

Figure 5.3.1-3. Software  Size  Estimation  Process  Wideband Delphi Method 

Analyze  the FGP and other system  documents such as the  System  Specification and 
the  Software  Requirements  Specification (SRS), if available. 

Establish the Work Breakdown  Structure (WBS), Contract  Data  Requirements  List 
(CDRL), and SOW; with the Project  Manager, if these  are  not  defined in the  contract. 
These  elements,  the  basis  for  a  Project  Management  Plan, set the bounds on the  scope 
of the problem. On small  task  order  efforts,  the  single input may  be  the  task’s SOW or 
verbal input from  the  customer. 

Develop  a  high-level  system  architecture.  The  architecture  consists of 

1) Selection and identification of hardware  configuration  items (if you  have  them) 
2) Selection and identification of software  systems and subsystems 
3) Identification of interfaces  from  software  subsystem  to  software  subsystem 
4) Results of trade studies, if necessary 

Define the functions of each  software  subsystem in a  Software  Estimation  Design 
Table. This table  includes  the  names  and  functions of each of the  software  subsystems. 

Version 1 Hughes STX Proprietary 



5.3-5 SOFWARE COST E ~ M A T I N G  Software Engineering Guidebook 

f. Develop a  tailored software process. This guidebook constitutes a recommended 
HSTX software process.  Tailor the standard process and include it directly or by 
reference in  an SDP. The list below constitutes the minimum for  a tailored software 
development process; this assumes the SRS has been developed. 

1) Evaluation of software requirements 
2) Software preliminary and detailed design phases 

4) Support of software integration by the software developer 
5) Software testing by an  Independent Test Organization (ITO) 
6) Documentation as described in contract/task requirements 
7) Theuseof SDFs ' 

8) The use of an SDL 
9) Software metrics collection and reporting 
10) The use of a requirements traceability matrix 
11) The use of a High-Order Language (HOL) 

' 3) An implementation and unit test phase 

If the software organization is responsible for the development of the SRS, additional 
effort for this activity needs to be included in the software estimate. 

2. Define the size of each software system in Source Lines of Code (SLOC).  (Refer  to Figure 
5.3-3, a process flow for determining software size.) This process consists of the following 
steps, using  the Wideband  Delphi  Technique originated by the Rand Corporation: 

[BOEH, W .  333-3361 
1 

a. A person  who will not be performing detailed sizing is selected as coordinator. 

b. Three to seven software experts with experience in software sizing are chosen. Fewer 
people may be used for smaller projects. (You must use at least two people for this to 
work at all; three are better.) 

c. The coordinator presents each expert with  the system specifications, an estimation 
form, and a list of modules, including their sizes, from past experience that  are similar 
to those being developed. The historical data could be from  a metrics database. (A 
sample of the estimation form is given in Figure 5.3.3-1.) 

d. The coordinator calls  a group meeting in which the experts discuss estimation issues 
with  the coordinator and  with each other. 

e. The experts fill out forms (anonymously). A sample is given in Figure 5.3.3-1. 

f. The coordinator prepares and  distributes a summary of the estimates at the  top of the 
iteration form. This is  shown in Figure 5.3.3-1. 

g. The coordinator calls  a group meeting specifically for the experts to discuss any points 
where their estimates vary widely. 

h. The experts fill out the bottom of the iteration form, again anonymously, and Steps e 
through g are iterated for as many  rounds  as  appropriate (until the estimates converge 
to an acceptable range). 

i. The coordinator ensures that the output for each software system includes the 
software system name,  expected (estimated) size, the estimation uncertainty 
(standard deviation or low/high  spread),  and reuse information (such  as previous 
size, percentage to be redesigned, percentage of code to  be changed, and percentage 
of code to be retested). 

Version 1 Hughes STX Proprietary 



Software  Engineering Guidebook SOFIWARE COSTESTIMATING 5.3-6 

3. Define  the development  environmental  factors  for  each  software  system.  Use  the  cost 
model  user  manual  (see  next step) to determine  the  environmental  factor  settings  for  the 
development. 

4. Execute  the  software  costing  model(s).  The  models  are  computer  resident  models  for 
estimating  the  effort and schedules for software  development  projects.  Use  either  the 
Revised  Intermediate  Constructive  Cost  Model (REVIC) (availuble in the Sofhoare 
Engineering Laboratory [SEL] at HSTX) or  the  Constructive  Cost  Model (COCOMO) (also 
available in the SEL), or both.  These  models  produce  estimates of project  schedule,  schedule 
of phases,  labor hours for  the  software  effort, and productivity  rate. If the  model output 
meets  schedule  or  staffing  constraints,  proceed  to  the  next  step.  Otherwise, rerun the 
model and constrain  either  schedule  or  people,  whichever  is  the  more important 
constraint. (You cannot  constrain  both  schedule and people.) 

Note: The REVIC model is based on the COCOMO model, and its user interface is easier to use.  The COCOMO model is 
implemented as a Microsoft Excel spreadsheet and has fewer  constraints  than REVIC. REVIC has m e  schedule constraints 
that make very short development schedules impossible to model. See the REVlC User's Manual for additional details. 

5. Develop  a  project  estimate.  Using  the output of the  costing  model, subtract activities 
included in the model but not in the  development  process,  such as documentation,  formal 
reviews,  or  efforts  by  other  organizations. Also subtract  items  not appropriate for  a 
tailored  software  process, as with a  small  rapid  prototyping  effort.  Add  activities  required 
for  the  project, but not included  in  the  model. For  example: 

a. 
b. 

d. 
e. 
f. 
g* 
h. 
i. 

k. 
1. 
m 
n. 

C. 

j. 

0. 

P- 

Additional studies 
COTS software 
Familiarization with and testing of Government-furnished  software 
Additional  documentation 
Additional  testing 
Special  prototypes 

Subcontractors 
Computer operators 
Management * 
Program  Office * 
Systems  engineering * 
Independent Testing * 
Software QA * 
CM * 
Other  Direct  Costs (OKs) (nonlabor  expense),  such as computer  hardware, 
maintenance,  travel,  licenses,  and  consumables 

security 

The  items  marked * are included in some  models.  The COCOMO model  which is 
implemented as an Excel spreadsheet in the SEL, has  these  factors  included.  See the 
REVIC User's  Manual  for  information about the  factors  that it includes. 

6. Perform  risk  analysis.  Risk  analysis is where the "doability" of the  project is assessed.  Can 
this  project be done as costed?  Can  the  environmental  factors be supported? (Are  you really 
going  to use Computer-Aided Software Engineering [CASE] tools? Will the expert programmers 
be available for this job?) What are the areas of greatest  technical  risk? Is there  new 
technology? As a result of the  analysis, add any risk mitigation  costs, and ensure that 
high-risk  activities  get  highest  priority on resources  (people and equipment). 

Version 1 Hughes STX Proprietary 



5.3-7 SOFIWAFE COST ESTIMATING Software Engineering Guidebook 

S O W A R E  SIZE  ESTIMATION  ITERATION  FORM 
Wideband  Delphi  Method 

Project 

Estimator 

CSCl 

1 Here is the  range  of  estimates  from  round: 

Date 

I I 
SLOC* 

20 40 60 80 100 
I I 

X -Estimates  Received, Y -Your  Estimate, M -Median  Estimate 

Please  enter  your  estimate  for  the  next  round:  'Source  Lines  of  Code  (SLOC) 

Please  explain  any  rationale  behind  your  estimate: 

Figure 5.3.3-1. Software Size Estimation  Iteration Form (Whiteband Delphi Method 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook S O ~ A R E  COST ESTIMATING 5.3-8 

SOFIWARE SIZE ESTIMATION ITERATION FORM 
Wideband  Delphi  Method 

Project ABC 
Estimator John Doe 
CSCI DISPLAY 

Here is  the  range of estimates from round: 1 

X Y  M X X SLOC* 
0 20 40 60 80 1 00 

X -Estimates  Received, Y -Your Estimate, M --Median  Estimate 

Please enter  your  estimate  for  the  next round 'Source  Lines of Code (SLOC) 

Please explain  any  rationale  behind  your  estimate: 

Figure 5.3.3-1. Software Size Estimation  Iteration Form (Whiteband Delphi Method 
I150481 

Version 1 Hughes STX Proprietary 



5.3-9 SOFIwARE COST ESTIMATING Software Engineering Guidebook 

7. Develop a  project bid. Notice that the project bid is different from the project estimate. The 
bid depends  on many factors, including the project estimate. These factors include such 
things as the importance of winning this contract and the willingness of the company to 
invest additional  funds in the likelihood of winning follow-on work. The project  bid 
consists of the following steps: 

a. Get a detailed price estimate. "Cost" is transformed into "price." The pricing system 
uses straight-time labor rates and ODC to build a total price for the project.  The 
pricing system includes overhead, General and Administrative (G&A)  costs,  cost of 
money, and profit. Consult the HSTX Contracts Department for details  on pricing. 
Once a price estimate is completed, you may find your costs above a budgeted 
number. It may then be necessary  to start over at Step 1 to reduce the scope of the 
project. 

b. Consider special constraints and apply associated  costs. 
c. Submit the data for official pricing using the HSTX pricing system (see the HSTX 

d. Assemble and compile the bid with other portions of the proposal effort. Coordinate 
Contracts Department). 

with  the project manager and/or your immediate supervisor before presenting the 
proposal to the customer. 

8. Perform dynamic cost  projection throughout the project.  Dynamic  cost  projection is  the 
software costing activity in which the project tracks estimates and factors throughout the 
project.  Tracking the estimates throughout the project provides historical data for future 
projects. 

Note: The HSTX Software Engineering Process Group (SEPG) is responsible for storing and making available these data for 
other projects. See the  SEPG lead for additional details. 

5.3.3 Estimating  Contingencies 

Take care in estimating software size. Estimating size is critical and  is often inaccurate. Sizes 
are invariably underestimated. Watts S .  Humphreys says "Code growth  is the most important 
single factor in cost and schedule overruns."  [HUN891 Barry Boehm explains in Software 
Engineering  Economics that underestimation of software size is caused by three factors IBOE81, 
320-3211: 

People are basically optimistic and desire to please. 
People tend to have incomplete recall of previous experience. 

People are generally  not  familiar with the entire software job. 

The point is to choose estimating experts carefully and to take enough care in estimating sizes. 

5.3.4 Cited  References 

[ISD48] Software Engineering Handbook,  Build 3, Division 48, Information System Division, 
Hughes Aircraft  Company,  March 1992. 

[HUN891 Managing the Software Process, The SEI Series in Software Engineering, Addison- 
Wesley Publishing Company, Inc., Reading, MA, 1989, pp. 92-96. 

[BOE81]  Boehm, Barry W., Software  Engineering  Economics, Prentice Hall, Inc.,  Englewood 
Cliffs, NJ, 1981, pp. 333-336. 

Version 1 Hughes STX Proprietary 



Section 5.4 

Software Metrics 

Contents 

5.4.1 Introduction ................................................. .5. 4.1 
5.4.2  Metrics  Details ................................................ 5.42 

5.4.2.1  The Goal/Question/Metric Paradigm ..................... 5.42 
5.4.2.2 Data  Metrics ........................................... 5.43 
5.4.2.3  Useful Computed Metrics ............................... 5.45 
5.4.2.4  Tracking  Metrics ....................................... 5.48 

5.4.3  Tailoring  for  a  Small  Project ..................................... 5.49 

5.4.5 Appendix .................................................... 5.410 

5.4.2.5 Procedures ............................................ 5.49 

5.4.4 Cited  References ............................................... 5.49 

5.4.5.1  Checklist ............................................. 5.410 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



5.4.1 Introduction 

This section describes the collection and uses of software metrics. Software metrics are 
measurable indications or attributes of a software development process, product, or project. 
These metrics provide management with a means to monitor a  project.  Both  objective and 
subjective measures are important to consider when assessing the current state of the project 
[SEL-82-202]. Objective data consist of actual counts of items, while subjective data are based 
on feelings about a characteristic or condition (e.g.,  level of difficulty of a problem, stability of 
the requirements, etc.) [SEL-81-107]. Software metrics should be collected and reported 
throughout the software lifecycle, although different software metrics may be required during 
various phases of software development and maintenance. Metrics are  used by senior 
management, project management, proposal teams, software engineers, software developers, 
QA individuals, and CM. 

The prima y objective for collecting  data  is ultimately to produce a quality product lMP1921. 

The benefits derived from collecting, analyzing, and reporting metrics include the following: 

Measuring and improving the software development process 
Determining trends and predicting problem areas 

Monitoring and tracking product quality 

Measuring, predicting, and improving software product quality 
Monitoring and tracking project progress 
Measuring and improving productivity 
Calibrating models 

Identifymg complex computer program modules 
Producing realistic schedules 

Gathering data for better estimation of future  bids 

The following are personal benefits of using metrics for the managers [MPI92]: 

Improved communication with customers, managers, and fellow employees 
Improved resource management 
Improved employee morale 

Ability to visualize and generate goals 

0 Increased quality of the software development process 

Ability to assess the process, product, and project 

0 Assessment of the process and  products to help identify specific areas of improvement 
Better  visibility of the process 

The following are personal benefits of using metrics for engineers, developers, testers, CM, 
and QA individuals [MP192]: 

0 Improved communication with customers, managers, and fellow employees 

0 Historical data to aid in allocating appropriate time and resources for a  project 

0 Improved quality of the  product resulting in  an improved personal image 

A more consistent and predictable process or  product 

0 Collected data that show where the process needs streamlining 

Version 1 Hughes STX Proprietary 



5.4-2 S o m m  Mmcs Software Engineering Guidebook 

Collected data to justify  the  need  for  tools  to  streamline the process 
A Software  Metrics  Group (SMG)-a subgroup of the SEPG-should be  formed  and  should 
document and maintain  guidelines for  software  metrics.  These  guidelines  should  apply  to  all 
HS?X projects that involve  the  generation and/or maintenance of software.  It is the 
responsibility of individual project  managers  to  use the software  metrics  guidelines. 

The  estimates of progress  for  current  software  projects  or  the  estimates of the  required  effort 
for future software  projects  are  often  essentially crude guesses, if metrics  are  not  collected and 
used.  Metrics  collection provides a  quantitative  method by  which  progress on a  project  can  be 
tracked and forecasts  generated.  Historical  data  can  be  collected  from  several  projects to  make 
projections with less  risk, quantitative estimates of the risk, and projections with increased 
schedule and effort  estimation  accuracy. A historical database should be established  and 
maintained by the SMG  to gather metrics data. The metrics data collected  can be used  to 
determine  trends,  calibrate  models, and support proposal  teams. 

Metrics should be used  to  measure  processes and products and refine  processes  to  decrease 
error  density and increase  productivity;  they  should  not be used  to evaluate people. If metrics 
were  used  to  evaluate  people, it is unlikely  that the metrics  would  be  collected in an accurate 
manner. 

5.4.2 Metrics  Details 

“The best criteria for the value of a metric is the degree to which it helps us make  a decision.” 

-Barry  Boehm [MMZ92] 

5.4.2.1 The Goal/Question/Metric Paradigm 

Victor  Basili has defined  the  concept of the  Goal/Question/Metric (G/Q/M) paradigm.  The 
G/Q/M paradigm is a  mechanism  for  defining and evaluating  a set of operational  goals, 
using  measurement [BASSO]. The G/Q/M model  is an approach for deriving goals for  a 
specific  organization.  After  determining  the goals of the organization, appropriate metrics  can 
be used  to support the  process of attaining  the  goals. This model includes the  following  basic 
steps [MP192]: 

1. Identify  improvement  goals  for  the  process,  product,  or  project. This step can  be  further 
divided into the  following steps [MPZ92]: 

a.  Identify  the  stakeholders.  Stakeholders  can include the customer,  end  users, 

b. Identify  the  stakeholders’  most  important  issues. 
c. Prioritize  the  stakeholders’  problems,  opportunities, and requirements. 
d. Group the  related  issues. 
e.  Validate  priorities and groupings  with  stakeholder  representatives. 
f. Formulate  goals and subgoals. 

developers,  testers, QA,  CM,  marketing, and both senior and project  management. 

2. Identify the questions  quantifymg  the  goals. 

3. Identify the metrics  for  determining  the  answers  to  the  questions. 

4. Develop  mechanisms  for data collection  and  analysis. 

5. Collect,  validate, and analyze  the data for  feedback on projects and corrective  action. 

6. Analyze in a postmortem  fashion to  assess  conformance and make  recommendations  for 
future improvements. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFTWARE M m C s  5.4-3 

7. Provide feedback data to the project group. 

The following is  an example from Daskalantonakis’ paper [DAS92]: 

Goal 1: Analyze the project planning/tracking phase to update the project plan, with respect 
to  project cost/budget, schedule, and effort from the point of view of the software manager. 

Question 1.1: How can I increase the accuracy of the effort/schedule estimates obtained for 
my  current project? 

Data ItemsMetrics  Used 

Planned project  effort (in person hours) from previous (similar) projects and current 

Actual project  effort (in person hours) from previous (similar) projects 

Planned project schedule (in calendar months) from previous (similar) projects and 

Actual project schedule (in calendar months) from previous (similar) projects 

Question 1.2: Is my project progressing according to schedule? If not, what activities are 
affected, and how can I get the schedule under control? 

Data ItemsMetrics  Used 

Initially planned project schedule (in calendar months) per current project phase 
Actual project schedule (in calendar months) thus far for  each  project phase 

For each incomplete phase, the projected completion data for that phase 

project 

current project 

5.4.2.2 Data Metrics 

The Software Engineering Institute (SEI) recommends collecting the following metrics at a 
minimum [CAR92]: 

Counts of physical Source  Lines of Code (SLOCs) (estimated and actual) to measure size, 

Counts (estimated and actual) of  staff hours expended (per month and cumulative) to 

Calendar dates (estimated and actual) to measure schedule 

Counts of software errors and defects to measure quality, readiness for  delivery, and 

progress, and reuse 

measure effort,  cost, and resource allocations 

improvement trends 

The following is a list of metrics that could be collected: 

Project 

Project characteristics (such as type of application, programming languages used) 

Size in SLOC  (new,  modified, deleted, reused) converted to Thousand Assembly- 

Effort (estimates and actuals) 

Schedule (estimates and actuals) 

Equivalent Lines of Code (KAELOC) (estimates and actuals) 

Total errors 

Version 1 Hughes STX Proprietary 



5.4-4 SOFIwARE M m C S  Software Engineering Guidebook 

0 Total  defects 
Number of  staff 

WBS 
Delivered  defects 
Delivered  defects  per  size 
Number of open  customer  problems 

The following  items  are  phase-dependent  metrics.  Estimates for the  next  three  metrics  should 
be  re-estimated  and  reported during the  review  associated  with  each of the following  phases. 

0 Size in SLOC  (new,  modified,  deleted,  reused)  converted  to  KAELOC  (estimates and 
actuals) 
Effort  (estimates  and  actuals) 
Schedule  (estimates  and  actuals) 

Requirements  Phase 

Total number of requirements  (estimated and actual) 
Number of requirements  defined 
Number of requirements  questions 
Number of requirements  changed 
Requirements  inspections  completed 
Number of requirements  errors  found in reviews 
Number of requirements  defects  found in subsequent  phases 
Documentation  Page  Count  (DPC)  for  requirements  documents 

Design  Phase [ZSD48] 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Software  subsystem  designs  completed 
Number of software  modules  identified 
Number of software  modules  designed 
Interface  designs  completed 
Design  walkthroughs  completed 
Design  inspections  completed 
Design enors found in reviews 

Design  defects  found in subsequent  phases 
DPC for  high-level  design  documents 
DPC  for  detailed  design  documents 
DPC for Interface  Control  Documents  (ICDs) 

Coding Phase [ISD48] 

Modules  coded 
Code  walkthrough  completed 

Inspections  completed 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook S o m a  M m C s  5.4-5 

Coding  errors  found in reviews 
Coding  defects  found in subsequent  phases 
Modules unit tested 
Modules  accepted  into  integration  library 

Testing  Phase [LSD481 

Modules  successfully  integrated 
Test steps  planned 
Test steps executed 
Test steps  passed 
Problems  opened 
Problems  closed 
Modules  accepted  into  controlled  library 
SLOC of modules  accepted  into  controlled  library  (cumulative) 

Maintenance  Phase 

Problems  opened 
Problems  closed 

In  determining  which of the  above  metrics  should  be  collected,  the G/Q/M paradigm  should 
be  kept in mind. This means  that  only  the  metrics  that support the  goals of the project and/or 
division  are  collected. 

5.4.2.3 Useful Computed Metrics 

Computed  metrics  are  those  that are calculated  using  the  primitive  metrics that are  directly 
observed.  The  following are useful  computed  metrics  from  the Motorola Software Metrics 
Reference Document [MMRSI]: 

In-Process Faults (IPF) = IPF caused by delta software  development 
Assembly-equivalent delta  source size (KAELOC) 

See Table 5.4.2.3- 1 to  determine  the assembly-equivalent source size. 

In-Process Defects (IPD) = IPD caused by delta  software  development 
Assembly-equivalent delta  source  size (KAELOC) 

Number of released  defects 
Total Defects m, total =Assembly-equivalent total  source size (KAJ3LOC) 

TRD delta = Number of released  defects  caused by delta software  development 
Assembly-equivalent total  source size (KAELOC) 

Number of CFD 
Customer-Found Defects (cFD) total = Assembly-equivalent  total  source  size (KAELOC) 

Number of  CFD caused by delta  software  development 
CFD = Assembly-equivalent total source size (KAELOC) 

Version 1 Hughes STX Proprietary 



5.4-6 S O m A R E  M m C S  Software Engineering Guidebook 

Table 5.4.2.3-1. Table for Determining the Assembly-Equivalent  Source Size I 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook SOmm M m C s  5.4-7 

New Open Problems (NOP) = Total new postrelease problems opened during the month 

Total Open Problems (TOP) = Total number of postrelease problems that remain open at the 
end of the month 

Total time postrelease problems remaining open 
at the end of the  month have been open 

Number of open postrelease roblems remaining 
open at  the  end oft  R e month 

Age of Open Problems (AOP) = 

Total time postrelease  problems  closed 
withiri the month-were  open 

Age Of = Number of open  postrelease  problems 
closed within the month 

Cost To Fix Postrelease Problems (CFP) = Dollar  cost associated with fixing postrelease 
problems within  the  month 

Total  Defect Containment Defects found prerelease 
Effectiveness (TDCE) = Total prerelease and postrelease defects found 

Errorsi 

Errorsi + Defectsi Phase Containment Effectiveness  (PCE) = 

Where: Errorsi is  the  number of errors found in the reviews of phase i and Defect% is the 
number of defects introduced in phase i (found so far) that escaped the formal reviews of 
phase i. 

Schedule Estimation Accuracy (SEA) = Estimated project duration Actual  project duration 

Effort Estimation Accuracy  (EEA) = Actual  project effort 
Estimated  project effort 

Software Productivity (SP) delta = Assembly-equivalent delta source size (KAELOC) 
Software development effort 

SP total = Assembly-equivalent total source size (KAELOC) 
Software development effort 

Software reliability = Failure Rate  (FR) = Number of failures 
Time 

McCabe’s Cyclomatic Complexity [McC82]=V(G)= e - n + 2 

Where:  e is the  number of edges  or  paths  on  the control flow graph G and n is the number 
of nodes on the control flow graph G. 

This complexity metric is defined for each module. A value of more than 10 is considered too 
high for a module. A different cutoff value may be selected based on internal  standard  and 
results of data analysis [MP192]. 

Halstead’s  Difficulty Metric [STO92]: 

Observed length 

Version 1 Hughes STX Proprietary 



5.4-8 S O W -  M m C S  Software Engineering Guidebook 

No=N1+N2 

Where: N1 = Total  usage of all operators (verbs) in a  module, and 

N2 = Total  usage of all operands (nouns) in  a  module 

Calculated length 

Nc = nl log nl + n2 log n2 

Where: nl = Number of unique operators (verbs) in a  module, and 

n2 = Number of unique operands (nouns) in a  module 

Normalized as: 

NC-NO 
N C  

1- or 

O i f  > 1  N C - N o  

N O  

5.4.2.4 Tracking Metrics 

The  following are useful  ways  to graph andreport metrics: 

Total  effort  (estimated  vs.  actual) 
Effort per  development  phase  (estimated vs. actual) 
Staffing  per  development phase (estimated  vs. actual) 
Schedule  (estimated  vs.  actual) 
Size of data  in SLOC (estimates  [most likely, minimum,  maximum]  vs. actual) 
Errors  vs.  development  phase (include estimated,  actual,  and  closed) 
Defects  vs.  development  phase (include estimated,  actual,  and  closed) 
Requirements  vs.  development phase (include  total,  changed, and removed) 
Inspections  (number  completed  vs.  planned  total) 
Modules  tested and integrated  (current  number vs. planned  total) 
Unit  test steps (number  completed  vs.  planned  total) 
System  test steps (number  completed  vs. planned total) 

The  following charts are  the  recommended  Motorola  software  metrics  charts that use the 
computed  metrics  defined in Section 5.4.2.3 [MMRSI]: 

IPF and IPD as a  function of calendar  time 
TRD (total) and TRD (delta) as a  function of calendar  time 

CFD (total) and CFD (delta) as a  function of calendar  time 

TOP and NOP per  month 

Version 1 Hughes STX Proprietary 



AOP and ACP reported monthly 
CFP reported monthly 

TDCE as a function of calendar time 

PCE per development phase 
SEA and EEA as a function of calendar time 

FR vs. total time of testing 

5.4.2.5 Procedures 

Metrics data  should be collected throughout the software development lifecycle and tracked 
using  the recommended graphs described above. The SMG can be useful in determining 
which metrics to collect and how to present the metics graphically.  Once  these are 
determined, it  is  important to train all of the  appropriate people in their use [STO92]. 

Metrics should  be evaluated to  track  project  progress, determine trends, and identify problem 
areas. 

Metrics should be reported to the SMG, at a minimum, by software system and total project. 
All metrics forms and  charts applicable to the current development  phase should be generated 
and presented to the SMG. These forms should contain project  characteristics, such  as  type of 
application and programming languages used, in addition to the other metrics reported. 

One  way to facilitate the collection of effort (staff hours) is to set up the WBS system so that 
each development  phase has a  different WBS number. The standard accounting reports can 
then be used to report effort. One way  to facilitate the collection of errors  and defects is to set 
up a problems database, which can be set up using any  number of database tools.  The 
problems can be classified as errors or defects and assigned to a development phase. Microsoft 
Excel can be used to create graphs if the data  are  imported from the problems database. 
Microsoft  Project can be used to display schedules. 

5.4.3 Tailoring to a Small Project 

The G/Q/M paradigm  should be used to determine which metrics would be useful for  a 
given project. The goals selected  may not be a function of project size. Therefore, the metrics 
collected on a small project  may be the same  as those collected on a larger project.  The reviews 
for each development phase may be more informal, but  it  is still useful to  collect the metrics 
data for each phase. 

The following metics should collected on all projects [CAR92: 

Counts of physical SLOC (estimated and actual) 

Counts (estimated and actual) of staff-hours expended (per  month  and cumulative) 

Calendar dates (estimated and actual) 

Counts of software errors  and defects 

5.4.4 Cited  References 

[ZSD48] Software Engineering Handbook, Build 3, Division 48, Information System  Division, 
Hughes Aircraft Company,  March  1992, pp. 11-20-11-21. 

Version 1 Hughes STX Proprietary 



5.4- 10 SOFIWARE METRICS Software Engineering Guidebook 

[SEL-81-305] Recommended  Approach to Software Development, Revision 3  (SEL-81-303, NASA 
Goddard  Space  Flight  Center, June 1992. 

[MPI92] Software  Metric5 for Process lmprovement-Participant Guide, Motorola  University,  April 
1992. 

[BASSO] Basili,  Victor R., Software Modeling and Measurement: The GoallQuestionlMetric 
Paradigm, Draft  Technical  Report,  Institute  for  Advanced  Computer  Studies, 
Department of Computer Science,  University of Maryland,  College  Park,  1990. 

IDAS921 Daskalantonakis,  Michael K., A Handbook for In-Process Use of Metrics by Software 
Managers, Motorola,  Inc.,  March  1992. 

[MMRSl]  Motorola  Software Metrics Rtference Document, April  1991. 

[JON881 Jones,  Capers, Tab2e of Programming  Languages and Levels, Enterprise  Software 
Planning  workshop  notes by  Software  Productivity  Research,  Inc.,  Version 4.0, March 
23,1988. 

[SEL-81-101] Manager’s Handbook for Software Development, Revision 1 (SEL-81-201), NASA 
Goddard  Space  Flight  Center,  November 1990. 

[CAR921 Carleton,  Anita,  Robert  Park,  Worfhart  Goethert,  William Fbrac, Elizabeth Bailey, 
and Shari  Pfleeger, Software Measurement for Dol3 Systems: Recommendations for Initial 
Core Measures, Technical  Report,  Software  Engineering  Institute,  CMU/SEI-92-TR- 
19,  September  1992. 

[McC82] McCabe,  Thomas J., Structured Testing: A Software  Testing  Methodology Using the 
Cyclomatic Complexity Metric, NBS Special  Publication 500-99, National  Bureau  of 
Standards,  December  1982. 

[ST0921 Storch,  Richard, A n  Introduction to Mefrics, Presentation  to HSTX, 1992.ISTO921 

5.4.5 Appendix 

5.4.5.1 Checklist 

YIN Check 

Have  improvement  goals  for  the  process,  product,  or  project  been  identified? 

Have the questions  quantifying  the  goals  been  identified? 

Have the metrics  for  determining  the  answers to the  questions  been  identified? 

Have  mechanisms  for  data  collection  and  analysis  been  developed? 

Have the data  been  collected,  validated,  and  analyzed  for  feedback  on  projects and corrective  action? 

Has  a  postmortem  analysis  been  conducted to assess  conformance  and  make  recommendations  for  future 
improvements? 

Have  feedback  data  been  provided to the  project  group? 

Version 1 Hughes STX Proprietary 



Secfion 5.5 

Scheduling and Tracking 

Contents 

5.5.1 Introduction ................................................. .5. 5.1 
5.5.2 What To Schedule ............................................. .5. 5.1 
5.5.3 Scheduling Principles ......................................... .5. 5.1 
5.5.4 Scheduling Multiple  Builds .................................... .5. 5.3 
5.5.5 Scheduling Mechanics ......................................... .5. 5.5 
5.5.6 Activity Networks ............................................ .5. 5.6 
5.5.7 Schedule Tracking ............................................ .5. 5.7 

5.5.8 Using  Graphical  Profiles  for Schedule Tracking ................... .5. 5.8 
5.5.9 Tailoring to a  Small  Project ..................................... .5. 5.9 

5.5.10 Suggested  References ......................................... .5. 5.9 

Version 1 Software  Engineering  Guidebook Hughes STX Proprietary 



Software Engineering Guidebook SCHEDULING AND TRACKING 5.5- 1 

5.5.1 Introduction 

Scheduling is one of the earliest activities in a  project. On most HSTX contracts, schedules are 
originally produced during the proposal phase  and refined after contract award. A  project’s 
schedule is evolvable to account for factors such as shifts in priority and scope, changes in 
external dependencies, and changes in project  resources.  This section discusses approaches to 
scheduling. 

5.5.2 What To Schedule 

Schedules show activities, milestones, and dependencies. Schedules should  show all major 
activities, as well as milestones. A  top-level schedule shows two kinds of milestones: 

Major Milestones-These are contractual milestones and other activities with customer 
visibility, such  as major  reviews, product deliveries, launch dates, and  due  dates for 
Government-furnished property. 

else’s schedule, or milestones that are fed by someone else‘s schedule. For example, if you 
need to produce an ICD in  order for another organization to start work on software that 
interfaces to your system, your schedule should show  when you expect  to complete the 
plan (because that  drives  another organization’s work) and  when  you need the software 
to be available (because that depends  on another organization’s work). It may be useful to 
develop a dependency chart before schedules are attached to  it. Showing these milestones 
allows a project-wide schedule review to coordinate efforts. 

Milestones  Involving Dependencies-These are milestones that connect to someone 

An intermediate schedule  shows lower level milestones, with a moving window of finer 
granularity. Within the window, activities are scheduled in detail, perhaps in 1-week 
increments. Beyond the window, activities might be scheduled by month, reflecting the higher 
uncertainty in the future. A  2-year schedule might have a 3-month moving window. Note that 
requirements for financial planning (which can vary by project) might affect scheduling 
decisions. For example, if the earned value system on a particular project requires definition of 
planning packages in a 4month moving window, it  is simpler to adopt  the  same size window 
for detailed planning. On task order contracts for NASA, HSTX submits Contractor Task 
Reports (CTRs) that  plan  the work for typically 6 or 12 months. Monthly reports are required, 
detailing the schedule status for the  past  month  and  the next month. 

On detailed or individual schedules, it is best to show all required activities. For example, if 
the schedule includes production of a document, the schedule might include milestones for 
development of ”ancillary paragraphs” (applicable documents, glossary, table of contents, 
etc.),  review  by  QA, delivery to the  document producer, and review of the final product before 
copies are made. There are two reasons for such comprehensive schedules. First, it can avoid 
forgotten steps. If the  schedule  shows  that  the developer is to produce a glossary before  QA 
can review a document, the glossary will not be forgotten. Second, it  avoids slips in activities 
scheduled later.  Even  a tight schedule should show some time for rework after QA reviews a 
document; otherwise, the almost inevitable rework will cause the next activity to start late. 

5.5.3 Scheduling  Principles 

Several principles apply to any kind of schedule construction: 

Schedule  all work. This sounds simple, but it is often ignored. For example, “design” is 
not finished without a document, or sometimes a  review.  A review is not finished without 

Version 1 Hughes STX Proprietary 



5.5-2 SCHEDULING AND TRACKING Software  Engineering  Guidebook 

completion  of  the  action  items. If this effort  is  not  scheduled,  the  next  activity  will 
probably start late,  and  there  will  be  effort  unaccounted  for by the  schedule. This can  lead 
to the ”90% done”  condition, in which  most of the  visible  work has been  completed but 
the  product is somehow  not  ready  to  be  delivered.  (For  example, the schedule  can  show 
that  design is “done,” but a few  unscheduled  activities  must  occur  before the design 
document  can  be  submitted:  resolve  design  review  action  items;  get  customer  concurrence 
if action  items  resulted  from  a  formal  review;  change  the  design if necessary in accordance 
with  action  item  resolution;  revise the requirements  traceability  matrix;  complete  the 
document,  including all sections,  a  glossary,  notes, etc.; review  and  correct the document; . 
and so on.  Ask ’What  will si- that we’re done with this activity?” and then put the 
result  on the schedule. 

Use  concrete  milestones.  Software  schedules  often  consist of milestones  for  design,  code, 
and  test.  These  milestones are deceptively  vague,  however. For  example, when is “code” 
complete?  It  could  be  when  the  programmer  says it is  complete,  when the code  compiles 
without  error,  when  a  code  walkthrough  has  been  done,  when  action  items  from  the  code 
walkthrough  have  been  resolved,  when  unit  testing is complete,  when the code is 
submitted  to  the  integration  library,  or  when the code  is  successfully  installed in the 
integration  library.  ”Design” and “test”  are  similarly  vague. Some sample  concrete 
milestones are shown below. 

I Design  Milestones I Code  Milestones I WMilestones 

I Design  walkthrough  completed I Code  walkthrough I Thread  executed 

I Walkthrough  action  items  done I Walkthrough  action  items  done I Thread  problems  fixed 

I Detailed  interface  design  docu- 
mented 

Procedure  revised  Unit test completed  and  filed 

Design  specification  paragraph  writ-  Software  frozen Unit  accepted  into  library 1 ten 

In selecting  milestones  for  your  activities,  a  good  rule  to  follow is that an activity is 
complete when the result is available  to  the  next  activity.  For  example,  a  unit‘s  code and 
test  work is complete  when the unit is in the  integration  library  and  available  for  use in 
integration.  (After  ”normal”  code and unit  test  work,  more  (unscheduled)  work  could be 
required  before  the unit is available  for  the  next  step.  The  wait  test  may  have  worked,  but 
the unit  may  have  been  submitted with incorrect CM library  control  commands,  causing it 
to be rejected  from the library (and thus be  unavailable  for the next  activity).  The  unit  may 
have  made  nonstandard use of some data files,  causing it to  be  rejected.  The unit may 
have  a  name  or  some  external  variables  that  duplicate  something in the  library,  causing 
rejection.  Multiple  versions  may  already  be in the library,  causing  confusion as to the 
“latest”  version.  In  other  words,  the unit may  fall  into  a  void  between “unit test”  (”I’m 
done  with it”) and  “integration”  (‘We can’t use it”), in which  no  one  seems  responsible. 

Avoid false precision.  Creating  a  schedule  does  not  create  information; it creates  a 
reflection of what  you  already know.  You do not  know  that  a  Cweek  task will complete  on 
a Wednesday, so you  should  not  show  that  precision  on  a  schedule. Too many  things  can 
go wrong that cause  a  1-day  slip. For  example, a key person may  be  sick on Tuesday;  a 
snowstorm in Colorado, an earthquake in California,  or  a  hurricane in Virginia  could  close 
the  facility  for  a  day;  or  a  power,  computer,  or  reproduction  failure  could  cause  a  delay. 
(Of  course,  these are  also  reasons to  avoid  pushing  work out close  to a  deadline.)  The 
following is a  recommendation  for  schedule  granularity: 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SCHEDULING AND TRACKING 5.5-3 

Duration of Effort Schedule  Granularity 

2 weeks 
3-12 weeks 
Over 12 weeks 

Day 
Week 
Month 

There are some exceptions to this guideline. If a proposal is due  at 1O:OO a.m. EST on a 
date 6 months from now,  a schedule can show specific days for  delivery, shipment, 
printing, final galley proofs,  etc. (because the deadline is fixed and  we know that 
proposals are never done early). If a contract gives specific dates for availability of 
Government-furnished property, those dates can be  shown  on a schedule (because they 
are contractual dates). Do not include greater precision than  your information warrants. 

Reschedule  only  after redirection. ”Reschedule” means to throw away  the old schedule 
and produce a new one. Its effect is to wipe away any schedule slips and produce a bright, 
shiny, unsullied schedule. It is not proper to reschedule unless there has been a 
redirection; that is, unless there has been a change in the contract, or customer direction, 
that changes the baseline activities, or direction from the program manager or customer. 
(A redirection may involve only part of a program; if so, that  is  the only part to be 
rescheduled.) Showing a slip  does not constitute a “reschedule.” It is proper to replan a 
schedule to rearrange activities, but the revised schedule should  show the changes from 
the baseline schedule, with some activities slipped and  some  (with luck) advanced. If the 
schedule gets messy, it accurately reflects the fact that  the planning or development 
process has been messy. If the customer concurs in rescheduling for ”cleanup” purposes, a 
new schedule can be  produced. 

5.5.4 Scheduling  Multiple  Builds 

For large development projects, it  is often advisable to schedule multiple builds of the 
software. The incremental build approach enables a large software system and software 
development team to be divided  into smaller, more manageable components. Developers on 
the second (and succeeding) builds will benefit  from the experiences of the teams that develop 
the preceding builds. Additionally, the software developed during the first build, which will 
be the key parts of the system, will be developed and tested sooner,  longer, and more 
thoroughly. Refer  to Figure 5.5.41 for an example of a multiple build software development 
schedule. 

The composition of each build should  be completely defined during the software 
requirements analysis and the preliminary design phases. With incremental builds, each build 
will have its  own  set of software development phases. For example, each build may contain a 
detailed design phase  through subsystem integration phase, or each build may contain only a 
subsystem integration phase. 

The following are  some guidelines for determining the scheduling of multiple software 
builds: 

Identifying Threads-The build definition essential to program integration and test starts 
with thread definition. A thread is a sequence of software that accepts a system input and 
produces a system output. That is, it  is a set of software that can be executed with very 
few or  no  stubs or drivers providing essential input or output. (Stubs may be necessary  to 
hold the place of units assigned to later threads.) The intent is to aggregate units  into a set 
that can provide a complete, although small,  piece of the system’s processing. (One way to 
decompose the software into  threads  is to use a  PERT-type chart  or  data flow diagram that 

Version 1 Hughes STX Proprietary 



5.5-4 SCHEDULING AND TRACKING Software Engineering Guidebook 

EXAMPLE SOFTWARE DEVELOPMENT I Multiple  Build 
Software  Development 
Schedule 

I 
M O N T H S  I 

i 

.̂.. . . . .  ... .i.. ....... i .......... i .......... j ................................ (. ......... (. .......... > ........................................... : . .  ................................ 
i i Build 1 Build 2 /Bui:ld 1 &Id 2 

PDR CDR C D R ,  I TRR I TRR FQR 

. .  . .  

....................... i ......... <. ........ ; ..................... ~ .......... ~ ...................................................... " . . . .  . . .  ................................ . ,  ............................... 

SRR 
..... 

..... .................................. 0 
: i  . .  . .  . .  . .  . .  

Software Milestones 
. .  . .  , .  ............................ : ........ . .  . .  . .  . .  . .  . .  . .  

..,... 

Requirements  Analysis 
Preliminary Design 
.................................................................................... 

. .  . .  . .  +57 .................................. 

LF . .  . .  . .  . .  . .  . .  . .  , .  

..... 

- 
+.. ........................... + ........ . .  . .  . .  . .  . .  . .  . .  

. .  
: :  , .  , .  . .  . .  , .  . .  . .  

BUILD 1 

..... 

../.. 

.... 

..... 

Detailed  Design 
Code/CSU  Test 
CSC Integration 

.................................................................................... 

. . . . . . . . . . . . . . . . .  

.................................................................................... 

. .  ...................................... . .  . .  . .  . .  . .  

. .  . .  . .  . .  . .  . .  . .  . .  . .  ................. < ......... .+ ........ , .  . .  . .  . .  . .  . .  
! :  
. .  

. .  . .  . .  ...................... . .  . .  , .  , .  
, .  . .  ..................................... . .  , .  

BUILD 2 
Detailed  Desian 
Code/CSU  Test ............................................................................... ........................... +. .... . ,  . .  . .  . .  . .  . .  . ,  . .  ............... .>. ......... .>. ....... . .  . .  . ,  . .  . ,  

, ,  

, .  

CSC Integration 
................................................................ ..... 

.......................................................................... 

CSCl Qualification Test ................................................................................... 

..... . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  
, .  . .  , .  , .  , .  . .  . .  , .  , .  . .  . .  

............................. . .  

..................................... 

. .  . .  . .  , .  , .  . .  . .  

...... 

SWDGOl2 

Figure 5.5.4-1. Multiple Build  Software  Development Schedule 

illustrates the processing of all  system inputs and outputs. Threads  can  be  graphically 
identified  by  circling or color-coding  sequences  through the diagram.) 

Identifying Builds-Threads  should  be  aggregated  into  builds. A build is a major 
collection of software  whose  integration  test  will  be  noted  on  a  milestone  schedule. The 
composition of a  build depends on  the  needs of the  program.  However, the following 
guidelines  apply: 

- Well-understood  core  requirements  and  functions  should  be  implemented  in  early 
builds. 

- Higher risk code  should  be  implemented  in  early  builds. 

- Builds  should  represent  complete  logical  divisions of the  software  architecture,  with 
simple  interfaces  between  builds. 

- Functions  whose  implementation is not  completely  understood  or  may  depend  on  the 
implementation of other  software  should be implemented in later  builds. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SCHEDULING AND TRACKING 5.5-5 

- A build should contain software from a single major subsystem when possible. 

- The sizes and expected difficulties of builds  should not vary greatly. 

- Software dissimilar in nature or allocated to different CPUs  may require a separate 
build. Builds including software for start-up, initialization, essential operator 
interface, recording data useful for integration, etc., will occur  first.  These builds 
should  be  kept small to enable the earliest possible progress (which is a confidence 
and morale builder)  and to provide a platform for other builds. 

- Include database integration and testing as  an integral part of the total software 
integration. 

- The build plan  should consider any formal delivery schedules or internal schedules. 
There may be a reason to integrate specific software at specific  times in the process to 
support  planned later activities or to coincide with  the availability of interfacing 
hardware. 

- Do not defer “ancillary” functions such as error-checking,  recovery, and rollback to 
separate  or late builds. Despite the normal pressure to get ”the real stuff” working, 
these functions can speed up integration and lessen frustration if they are developed 
early. 

Milestones-One  or more threads support a functional capability as identified in the SRS. 
A milestone may consist of one or more capabilities that can be demonstrated by 
executing part of the software integration and test procedures. A milestone can also be 
associated with  the release of a master integration and test tape (or other media) 
containing all the software that supports a particular build. One major milestone could be 
an early operational capability. Depending on hardware, software, and  human resource 
availability, parallel integration and testing may be scheduled to encourage and promote 
integration and testing efficiency. 

identified to allow smaller increments of software to be integrated and tested. Smaller 
increments are encouraged because they usually promote faster problem identification. 

Intermediate Builds-Intermediate builds  that consist of informal builds may be 

5.5.5 Scheduling  Mechanics 

The mechanics of representing a schedule are generally not important. If the customer 
requires a  specific format, the mechanics may become important. A  few simple rules apply: 

Use automated  programs for neatness and ease of updating. (Microsoft  Project is an 
example of such a program.) However, if many schedules need  weekly updates,  it may be 
faster to update them manually. 

Use standard symbols for  milestones, progress, and schedule changes. Any nonstandard 
symbol should be defined on each schedule page. Activities with changes should be 
highlighted (asterisks are easy) for the regular schedule review. 

Enter major milestones into the chart first. For example, showing a Preliminary Design 
Review  (PDR) on the chart can indicate the  amount of flexibility of the schedule being 
reviewed. After the major milestones are listed, the  intermediate milestones can be 
inserted. 

Before contract award,  it  is best to develop schedules without actual calendar dates 
because the entire schedule may move.  Use dates After  Receipt of Order (ARC)) or After 
Contract Award (ACA). 

Version 1 Hughes STX Proprietary 



5.5-6 SCHEDULING AND TRACKING Software Engineering Guidebook 

Use the schedule.  A schedule should be a  tool  for  managing,  not  just  for  reporting.  Refer 
to it when  checking  progress.  Microsoft  Project  can be set up based  on  the WBS and can 
therefore be used  to generate Basis of Estimates  (BOEs) and to monitor status. 

Refer  to  Figure 5.5.5-1 for an example of an automated software  development  schedule.  This is 
sometimes  called  a  Gantt  chart. 

Single Build Software 
Development Schedule 

...................................................................................... I 
....................................................................................... 

Software Milestones 

....................................................................................... 

Requirements Analysis 
Preliminary Design 
Detailed  Design 
Code/CSU  Test 

....................................................................................... 

.............................. 

....................................................................................... 

CSC Integration 
CSCl Qualification Test 

................................................................................. 

..................................................................................... 

- 

_ _  
..... 

...... 

..... 

. . .  
\ 

..... 

. . . .  

..... 

EXAMPLE  SOFTWARE  DEVELOPMENT 
M O N T H S  

Figure 5.5.5-1. Software Development Schedule (Single Build) 

5.5.6 Activity Networks 

Activity  networks,  or PERT charts, are automated charts that  define  activities and their 
relationships in a  different  form than a Gantt chart. Each  activity is assigned  a duration 
(sometimes  a  minimum and maximum duration) and a  relationship with predecessor and 
successor  activities.  (Examples:  Activity  A must complete  before  Activity B starts. Or Activity 
B can start after  Activity  A starts, but before  A  completes.)  Using  these  dependencies,  the 
activity  network  program then predicts  a  completion date, identifies  a  critical path (the "long 
pole"  thread  that  determines the completion date), and  often  calculates  a  "float"  for  each 
activity.  The  float  for an activity is the  time  (usually  the  number of days) that the activity  can 
slip without affecting  the  overall  schedule. PERT charts can help in determining possible 
parallelism of activities and resource  levels. PERT charts are  very  useful in planning (and 
replanning), but three cautions apply: 

PERT charts require automated tools.  The burden of manual  calculation is too  great. 

PERT charts  are  most  useful  when  they  contain  a  manageable  number of activities.  The 
number  varies  from  tool  to  tool, but is usually  fewer  than 200. With  too many  activities, 

Version 1 
~ ~~~~ ~. 

Hughes STX Proprietary 



Software Engineering Guidebook SCHEDULINGANDTRACKINC 5.5-7 

the burden of maintaining the network is too high. Review is too  time-consuming, 
physical update time (entering data, printing graphs, etc.) is excessive, and utility 
decreases. To reduce the number of network activities, consolidate consecutive activities 
without dependencies into a single activity and  use a normal schedule (or a subnetwork) 
to detail the component parts. 

Beware of relying on probabilities. For example, assume two parallel activities converge 
into a third activity, and that the  duration of each of the first two activities is 75% certain. 
The probability that one activity will  be late is 25%, but  the probability that one or the 
other or  both will be late  (thus delaying the  start of the third activity) is 43.75%. (If the 
individual probabilities of slipping are 30%, then it is actually likely that one or the other 
or  both will be late.) 

5.5.7 Schedule  Tracking 

Constructing a schedule can assist in forming plans, devising an organization, and 
determining  the resources needed. However,  to be useful after the initial planning stage, 
schedules must be tracked and corrective action taken when progress deviates from the plan. 
There are several steps in schedule tracking. 

Schedule tracking usually starts  with weekly progress reports from individual developers. 
These reports  should concentrate on progress made, plans for the next week, and current or 
expected problems. Long reports on “what I did  this week” shodd be discouraged as time- 
wasters. The items of concern are concrete progress toward milestones, expected progress in 
the next period, and problems or issues on which the developer needs help from supervision. 

These weekly reports are combined into a  team, group, or task weekly report. The schedules 
will be  updated by the team leaders, section manager, planning staff, or software manager, 
depending on the project. 

The team reports  are aggregated into a software project report. The official program schedules 
are  updated based on this report, which is usually produced monthly. PERT charts are usually 
updated monthly, although they may be updated more frequently during crises. 

Many software activities will not have concrete milestones on a  weekly  basis.  It is important 
for the software manager or team leaders to have personal contact with  the developers, rather 
than relying completely on written reports. This contact can produce a  ”feeling” about what 
progress is being made, as well as a calibration of individual reports. (Some people report no 
progress until they are certain that the job is 100% complete; others report great progress 
based on what they expect to accomplish in the following day  or two. The software manager 
should  understand  the  reports  he or she receives.) Metrics that are collected on a regular basis 
could be very useful  for determining  status  in this case. 

When progress falls behind the plan, corrective action should be taken. There are many types 
of possible corrective action, depending  on project circumstances. The following are some 
examples, in addition to ”work harder” and  “add  more people”: 

Reallocate effort from areas ahead of schedule to areas behind schedule. 

Reallocate  effort from noncritical path items to  critical path items. 

Define interim capabilities to reduce risk, provide checkpoints, and establish goals. 

Analyze sources of delay and establish alternate procedures (i.e., establish a cmi team). 

Borrow experts or consultants in the areas causing difficulty. 

Version 1 Hughes STX Proprietary 



5.5-8 SCHEDULING AND TRACKING Software Engineering Guidebook 

Re-examine  activities  to  ensure  that  each  activity  is  essential.  (Example:  Are  people 
manually  creating  documentation  that  could  be  generated  automatically,  or  almost 
automatically?) 

Examine  whether  any  activities  can  occur  in  parallel  rather  than  in  series.  (Example:  Can 
developers update requirements  traces  while  their  software  is  being  installed in the 
library, rather than  having to do  it before submitting their  software?) 

Spread  people  over  staggered shifts to reduce  competition for  resources. 

Establish  teams  dedicated  to and responsible  for  problem  areas. Staff the  teams with all 
skills  needed  for  the  job  (including  dedicated QA and CM staff, if necessary.) 

Re-examine skills and ass@  people  to the areas in which  they  perform  best.  (Examples:  It 
may  help  to  assign individuals full time  to unit testing,  integration,  document  production, 
problem  tracking,  or  coding, depending on their individual skills.) 

5.5.8 Using  Graphical Profles for  Schedule  Tracking 

Graphical  profiles  provide  a useful technique  for  tracking  a  project‘s  progress.  For  example, 
when  a  project  manager  sees  a graph of  “Test Cases  Completed vs. Time,” the  manager is able 
to  assess  the  relative  progress of testing  that  week as compared to  prior  weeks  or  to  assess the 
time  required  to  complete  the  testing  (see  Figure 5.5.8-1). 

% of Test Cases  Completed vs. Time 

% of Test 
Cases 
Completed 

90 

75 

60 

45 

30 

15 

- Plan 

- Actual 

Figure 5.5.8-1. Example Graphical Profile 

Graphical  profiles  expose  the “90% done” problem.  When  you are regularly plotting progress 
on  a  graph, as in the  above  figure,  management is able  to  visually  see  the rate of progress  or 
lack of progress  on  a  project.  Showing planned vs.  actual  measurements sheds light on where 
you  need  to  be at any  given  point in order to  meet the schedule.  Graphical  profiles  work  only 
when  you  are  collecting  the underlying metrics data for  the  profile.  The  discussion of metrics 
in Section 5.4 provides  details  on what metrics should be  collected and how to successfully 
collect  them. Microsoft Excel  can  be  used  to store the metrics  and  to  display  the  graphical 
profiles. 

Version 1 Hughes STX Proprietary 



S o h a r e  Engineering Guidebook SCHEDULINCANDTRACKING 5.5-9 

5.5.9 Tailoring to  a Small Project 

Even on the smallest project it  is  important to schedule and track activities and milestones. If 
various reviews are not required by the contract, internal reviews should be scheduled. If 
documents are not required by the contract, completion of informal documentation should be 
scheduled. Graphical profiles of planned vs. actual metrics can be useful, even on the smallest 
project.  Microsoft  Project is an example of a planning tool that  is useful on all  projects. 

5.5.10 Suggested  Reference  Material 

Software  Engineering  Handbook, Build 3, Division 48, Information System Division, Hughes 
Aircraft  Company,  March 1992, p. 3-13. 

Version 1 Hughes STX Proprietary 



section 5.6 

Risk Management 

Contents 

5.6.1 
5.6.2 
5.6.2 

5.6.3 
5.6.4 
5.6.5 
5.6.6 
5.6.7 

Definitions ................................................... .5. 6.1 
Introduction ................................................. .5. 6.1 
Software Risk Management Fundamentals ....................... .5. 6.2 
5.6.2.1  Types of Risk ......................................... .5. 6.2 

5.6.2.1.1 Risk Reduction  Leverage  Example ............... .5. 6.3 
5.6.2.2 Software Risk Management  Taxonomy ................... .5. 6.3 

5.6.2.2.1 Risk Identification ............................. .5. 6.3 
5.6.2.2.2 Risk Analysis .................................. .5. 6.5 
5.6.2.2.3 Risk Mitigation ................................ .5. 6.6 

Software Risk Management Issues .............................. .5. 6.6 
Summary .................................................... .5. 6.7 
Tailoring to a  Small  Project ..................................... .5. 6.8 
Suggested  References ......................................... .5. 6.8 
Cited  References .............................................. .5. 6.8 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software Engineering Guidebook RISKMANAGEMENT 5.6- 1 

Software development managers need to address software risks before  they  become  project 
disasters. Software  risk management provides a set of tools to manage risks from initial 
discovery to  effective mitigation. This section discusses the fundamentals of software risk 
management, including risk identification, risk  analysis,  risk mitigation, and risk exposure 
calculations. 

5.6.1 Definitions 

Software  Risk  Management is defined by Barry Boehm [BOE891 as  “an emerging discipline 
whose objectives are to identify, address, and eliminate software risk items before they 
become either threats to successful software operation or major sources of software rework.” 
The key elements of software risk management are the assessment and control of risks. 
Assessment refers to the discovery, characterization, and prioritization of risks. Control refers 
to  the elimination, avoidance, and reduction of risks or ’What can we do about them?”. 

Risk Exposure (RE) or risk  impact is defined by the following formula: 

RE = Prob(U0) * Loss(U0) 

where Prob(LI0) is the probability of an Unsatisfactory Outcome (UO) and Loss(U0) is  the loss 
(in  dollars or a relative numerical scale) to the parties affected if the outcome is unsatisfactory 
[BOE89]. 

Risk Reduction Leverage (RRL),  which provides a comparison metric that measures the relative 
cost-benefit of implementing possible risk reduction activities, is represented by the following 
formula defined by Boehm [BOE891: 

RRL = { RE(before) - RE(after) 1 / (cost of risk reduction  measure) 

Where RE(before) is the risk exposure before the risk reduction effort, or what you started with; 
RE(after) is the risk exposure after the implementation of the risk reduction. A higher value of 
RRL is considered better than a lower value. 

5.6.2 Introduction 

The wide  use of computers  and  the increasing complexity of their software systems increases 
the probability of a disaster and makes risk management critical. 

From the development cost perspective, a  large,  complex  project has many opportunities for 
problems to  occur. However, problems can also occur on medium, small, and very small 
software development projects. The cumulative losses associated with  the  medium  and 
smaller sized projects may account for the majority of software disasters that occur.  Often, on 
smaller projects, less attention is paid to problems that might occur in the future  (both  during 
the development and  during the operations  and maintenance phases). Most of us work on 
medium- to small-sized projects that  may  have a wide  array of potential software disasters 
waiting to erupt. Boehm surveyed a number of TRW projects during the 1980s and compiled a 
list of the top-ten software risk items, shown  in Table 5.6.2-1. 

Version 1 Hughes STX Proprietary 



5.6-2 RISK MANAGEME~V~ Software Engineering Guidebook 

I'able 5.6.2-1. A Prioritized Top-ten  List of Software Risk Items 

People 

3. Developing  the  wrong  software  functions Requirements 

2. Unrealistic  schedules  and  budgets  Resources 

1. Personnel  shortfalls 

4. Developing  the  wrong  user  interface 

5. Gold  plating 

6. Continuing  stream of requirement  changes 

Externals 7. Shortfalls in externally  furnished  components 

8. Shortfalls in externally  performed tasks 

Technology 9. Real-time  performance  shortfalls 

I 10. Straining  computer-science  capabilities 

Does your  project  have one or  more of these  potential disasters waiting to happen?  How  can 
software  risk  management  techniques  mitigate  these  common risks? 

5.6.3 Software Risk Management  Fundamentals 

Many  software  project  managers  are  already  performing  risk  management.  Good  managers 
are always  thinking ahead, which  is  the  essence of risk  management.  The  science of software 
risk  management  formalizes  this  process.  The  remainder of this section  discusses  the  process 
of software  risk  management,  including  software  risk  management  fundamentals; risk 
identification,  analysis,  mitigation,  and  management  issues; and recent  research  and 
conclusions. 

5.6.3.1 Types of Risk 

In  the  software  industry,  risks  have  been subdivided into  a set of categories.  The U. S .  Air 
Force leads  the way in the development of risk  management fomal practice.  They  typically 
divide risks into the  following  types: 

Cost-The uncertainty in the  ability  to  complete  a  program  within its budget 
Schedule-The  uncertainty in the  ability  to  complete  a program within  the  allocated 

Technical-The uncertainty in the  ability  to  achieve  the  required  technology 
Operational-The  uncertainty  in  the  ability of the  delivered  system  to  meet  its 

Support-The  uncertainty in the  ability of the support organization to  maintain,  change, 

These  risk types are useful in identifymg and analyzing  the  impact of risks.  Many  software 
risks  result in both cost and schedule risks. 

schedule 

operational  (mission)  requirements 

and/or enhance the deployed  system 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook R S K W G E M E ~  5.6-3 

5.6.3.1.1 Risk Reduction  Leverage  Example 

The following is  an example of using RRL to compare two options: 

Case Study: The marketing department  at  your company promised the customer all 
kinds of extra  “bells” and “whistles” for your software system. You, as software 
manager, are tracking the progress and costs of this project  closely.  You discover that 
you are headed for a potential overrun of $100,000, if you don’t do something now. 
You have two options: spend $20,000 scrubbing requirements to remove the extra 
features from the software or spend $20,000 trying to implement the extra features. 
You estimate the Prob( UO) to be 0.8 and  the Loss( UO) to be $loOK, yielding: 

Case 1: Scrub Requirements 

RE(before) = (0.8)*($100K) = $80K 
RE(after) = (0.4)*($40) = $16K 
RRL(scrubbing) = ($80K-$16K)/$20K = 3.2 

In this case, the RE(after) assumes  that you have reduced the probability of an overrun 
to 0.4 instead of 0.8 and you have reduced the cost of that  overrun to  $40K. 

Case 2 Work Extra Hard 

RE(before) = (0.8)*($100K) = $80K 
RE(after) = (0.7)*($100) = $70K 
RRL(working hard) =($80K-$70K)/  $20K = 0.5 

In this case, the RE(after) assumes  that you have reduced the probability of an overrun 
to 0.7 instead of 0.8, but you have not reduced the cost of the overrun. 

In this example, the higher value of 3.2 vs. 0.5 indicates to the software manager that 
scrubbing the requirements would be the less risky alternative. 

5.6.3.2 Software Risk Management  Taxonomy 

Boehm has developed a taxonomy for software risk management. Risk management has two 
primary components: risk  assessment and risk mitigation (also known as risk control). Risk 
assessment consists of risk identification, risk analysis, and risk prioritization. Risk mitigation or 
risk control is composed of risk  management planning, risk  resolution, and risk monitoring. 

The following sections discuss in further detail the elements of  Boehm’s software risk 
management taxonomy.  Risk identification and risk analysis (including risk prioritization) are 
key elements of the process described in the following sections.  Section 5.6.2.2.3, Risk 
Mitigation, will discuss risk management planning, risk resolution, and risk monitoring. 
Figure 5.6.3.2-1 shows a summary of the risk management taxonomy. 

5.6.3.2.1 Risk Identification 

The first step in risk assessment is risk identification. The  goal of risk identification is to 
identify those elements of a program that contain risk.  The methods commonly used in risk 
identification include checklists, decision driver analysis, assumption analysis, and 
decomposition. 

Version 1 Hughes STX Proprietary 



5.6-4 RISK MANAGEMENT Software Engineering Guidebook 

Risk 
Management 

swDG010 

Risk 
Assessment 

Risk 
Control 

Risk Checklists 

Assumption Analysis 
Decomposition 

Decision Driver Analysis 

Performance Models 
Cost Models 
Network Analysis 

Risk 

Decision  Analysis ‘ Quality  Factor Analysis 

Risk  Risk  Exposure 

Compound Risk Reduction 

Risk Buying Information 

Risk Transfer 
Risk Reduction 
Risk Element Planning 
Risk  Plan Integration 

r Prototypes 
Risk 
Resolution 

Simulations 
Benchmarks 

t Analysis 
Staffing 

Risk Milestone Tracking 
Monitoring Top10 Tracking 

Risk Reassessment 
Corrective Action 

Figure 5.6.3.2-1. Risk Management Steps 

Checklists-Checklists are useful in starting the risk  identification  process.  Organizations 
should  develop  their own list of top-ten  risks  that are common  to  their  business  environment. 
One  risk  common  to  today’s  projects  might  be  ”shrinking  budgets.”  Table 5.6.3.2-1 lists  the 
top-ten  risks  found  by  Boehm  and  some  possible  risk  management  techniques  that  can  be 
applied to  these risks. 

Decision Driver Analysis--Risk drivers are those  variables  that  cause  cost,  schedule, 
performance,  or support risk  to  fluctuate  signihcantly.  Performance drivers can be subdivided 
into  requirements,  constraints,  technology,  and  development  approach.  The  technology 
variables  include  language,  hardware,  tools, data rights,  and  experience. 

Assumption AnalysisMajor software risks are hidden behind  assumptions.  It is important 
to  look  back at the  history of the development of the initial  scheduling  and  budgeting 
performed.  The  project  parameters  should  be  checked  against  history  (i.e.,  hardware  delivery 
schedule,  requirements  stability,  and  external  milestone shifts). 

Version 1 Hughes STX Proprietary 



Software  Engineering  Guidebook RISKMANAGEMENT 5.6-5 

Table 5.6.3.2-1. Top-ten  List of Software  Risk Items With  Risk  Management  Techniques 

Risk Item Risk ManagementTechniques 

1. Personnel  shorlfalls  Staffing  with  top  talent, job matching,  team  building,  morale  building,  cross-train- 
ing,  prescheduling  key  people 

2. Unrealistic  schedules  and  budgets  Detailed,  multisource  cost  and  schedule  estimation:  design to cost;  incremental 
development;  software  reuse;  requirements  scrubbing 

3. Developing  the  wrong  software  func- 
veys;  prototyping;  early  user's  manuals;  requirements  traceability  (if  it's  not tions 
Organization  analysis:  mission  analysis; operationsconcept formulation;  user  sur- 

required,  don't  do  it;  if it  is required,  don't  forget  it) 

4. Developing the wrong  user  interface Task  analysis;  prototyping;  scenarios;  user  characterization  (functionality,  style, 
workload) 

5. Gold  plating Requirements  scrubbing;  prototyping;  cost-benefit  analysis;  design to  cost; 
requirements  traceability 

6. Continuing  stream of  requirement 
changes to later  increments) changes 
High  change  threshold;  information  hiding;  incremental  development  (defer 

~~~ 

7. Shortfalls in externally furnished
components

Benchmarking; inspections; reference checking; compatibility analysis

Reference checking; preaward audits; award-fee contracts: competitive design or 8. Shortfalls in externally performed
tasks prototyping; team building

9. Real-time performance shortfalls Simulation; benchmarking: modeling; prototyping; instrumentation; tuning

10. Straining computer-science capa- Technical analysis; cost-benefit analysis; prototyping; reference checking
bilities

Decomposition-Software risks typically hide in large structures such as subcontracts, user
interfaces, database management systems, and utility libraries. Look for oversimplified
problems, complex interactions, major sources of change, and unprepared teams of people.
These large structures may cover up a lack of knowledge or understanding about that
segment of the project.

Decomposition is the process of breaking down these large segments into smaller, more
manageable pieces. Task "fan-in" and "fan-out" should be examined. Those tasks that have
many tasks fanning into them will be late if any of the parent tasks is late. Those tasks with
many tasks fanning out of them will cause all of the child tasks to be late if the parent task is
late itself.

5.6.3.2.2 Risk Analysis

The goal of risk analysis is to understand a project's risks by gathering data on Loss(U0) or
costs and Prob(U0) or probability. The software manager is able to estimate RES using these
parameters as discussed earlier. The methods or tools used in risk analysis are decision
analysis, network analysis, cost risk analysis, and risk prioritization.

Decision Analysis-Decision analysis is used to calculate impacts in complex situations.
Typically, a decision tree is used to illustrate the options or choices possible when a problem
occurs. Each has several possible outcomes with estimated probabilities and costs. The

Version 1 Hughes STX Proprietary

5.6-6 RISK MANAGEMENF Software Engineering Guidebook

manager computes the expected values and the maximum cost of each option. One option is
chosen to represent the impact of the risk item.

Network Analysis-Network analysis is primarily a tool for schedule risk analysis. A PERT
chart is used to show the dependencies of interrelated tasks. Fan outs, fan ins, and critical
paths are easily analyzed on the PERT chart. The existence of multiple parallel critical paths is
often a problem on projects. These should be replanned to reduce the number of critical paths.

Cost Risk Analysis- Software cost estimation models such as COCOMO are excellent tools
for cost risk analysis. The tools are best at determining initial estimates before the project has
started. In-process or cost-to-complete estimates are more difficult to develop because of the
many changes that can occur during a project, such as personnel changes, requirements
changes, and technical disasters. An organization’s ability to correctly model its costs is very
much based on the existence and accuracy of organization-specific cost accounting data.
Those companies that keep track of how each software development dollar was spent on a
project are better able to estimate costs on future projects. Setting up a charge structure that
maps to the WBS is a way of getting cost data directly from accounting reports.

Risk Prioritization-The goal of risk prioritization is to develop an ordered list of risk
elements. RE diagrams are important tools in risk prioritization. Risk prioritization should
actually be going on during the risk identification process. You should not spend much
analysis time on low-priority risk items. When RE calculations become difficult, the betting-
odds technique is sometimes useful. To use this method, simply think of how much money
you would bet on a risk item occurring. If you are willing to bet a lot of money, then the
probability of that risk item occurring is high.

5.6.3.2.3 Risk Mitigation

Risk mitigation or risk control addresses how the software manager develops an “attack plan”
for the risks identified during the risk assessment process. Risk mitigation consists of three
key areas:

Risk Management Planning-Develop a proactive approach to handling the risk.
Risk Resolution-Reduce the RE of undesirable outcomes for assumed risks.
Risk Monitoring-Understand the w e n t risk situation.

Table 5.6.3.2.3-1 summarizes the many techniques available for managing software risks.

5.6.4 Software Risk Management Issues

Because of the scope of software risk management, a number of issues result from its
application to projects. A few of these issues are listed below.

Historically, too much emphasis has been placed on the quantitative aspects of risk
management. RE calculations are highly dependent on the probabilities used, which, of
course, are really subjective ”estimates” of the chance that a particular unsatisfactory outcome
will occur. Too often there is not very much basis in reality of the ”numbers” used.

A related issue deals with the calculation of RRL. It is difficult to calculate project RRLs
because of the infinite combinations of risks. For example, a seemingly simple UO of
“hardware late” could be decomposed into many possibilities such as all hardware late, all
hardware very late, all hardware a little late, some hardware late, some hardware very late, or

Version 1 Hughes STX Proprietary

Software Engineering Guidebook RISKMANAGEMENT 5.6-7

Table 5.6-3. Risk Control Methods

Risk Control Area

Risk Management Planning

Risk Resolution

Risk Monitoring

Methods

Information buying Risk reduction
Risk avoidance Risk element planning
Risk transfer

Prototypes Incremental development
Simulations Requirements scrubbing
Benchmarks Prototyping
Staffing Mission analysis
Analysis Reference checking
Staffing and rescheduling of Preaward audits

Team building Fault tree analysis
Cost and schedule estimation Failure modes
Design to cost Use of spiral model
Design to schedule
Design techniques

people Performance

Milestone tracking Conective action
Topten tracking Risk management teams
Risk reassessment

some hardware a little late. The “some hardware late” UO divides into many combinations of
different hardware that could be late (e.g., memory, CPU, disks, printers, terminals).

Software risk management is not performed in a “cookbook” fashion. Management is the key
word in this field. The management of risk requires a good manager making good decisions.
No software process will make up for poor decisions. Executive levels of management need to
empower their employees to make decisions. However, this empowerment should be limited
by the degree of comfort that the executives have with the decision-making ability of their
employees.

Traditionally, too much emphasis has been placed on the risk identification segment of risk
management. The emphasis would probably be better placed on risk mitigation instead. The
key challenges in software risk management today are in the risk mitigation area. The budget
constraints of today’s economy require extremely creative solutions to the risks and problems
encountered in the highly complex systems currently being built.

5.6.5 Summary

Software risk management focuses the software team’s energy on the important issues. It is a
controlled process that empowers the project team to make decisions at the appropriate level
using facts and data, not intuition. Most importantly, software risk management increases the
probability of a successful program. Remember the following risk management principles
[BOE891:

If you do not actively attack the risks, they will actively attack you.

Never make promises you cannot keep, no matter what the pressure.

Raise and document new issues as they happen.

If you do not ask for risk information, you are asking for trouble.

Version 1 Hughes STX Proprietary

5.6-8 RISK MANAGE ME^ Software Engineering Guidebook

The techniques of software risk management will help the software manager (and others on
the software team) to make better decisions that reduce or eliminate the unsatisfactory
outcomes associated with most projects.

5.6.6 Tailoring to a Small Project

Regardless of size, the risk management function needs to be performed. The software
manager should be familiar with the concepts of risk identification, risk analysis, and risk
mitigation. The manager’s project planning should include risk management planning, risk
resolution techniques, and risk monitoring. Every manager (or developer responsible for a
task) should review the topten list of software risk items. If any of these items seems a likely
risk, the risk management techniques should be reviewed and the appropriate measures
implemented. RRLs can be estimated to determine whether risk reduction measures would be
cost effective. With experience, items can be added to the topten list of software risks. Then,
checklists can be used to determine whether these risks might be present on a project.

5.6.7 Suggested Reference Material

Littlewood, B., and L. Strigini, ’The Risks of Software,“ Scient@ American, November 1992.

[NE W861 Newmann, P., ”On Hierarchical Design of Computer Systems for Critical
Applications,” IEEE Transactions on Software Engineering, SE-22,9, September 1986,
pp. 905-920.

IGLA921 Glass, R., Building Quality Sofhoare,.Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[HAC921 ”Risk Management Course Materials,” Hughes Aircraft Company, CA, 1991.

[CHAR] Charette, “Software Risk Management.”

[FIR921 Firth, Robert, “The Role of Risk,” October 1991.

Tate, Paul, ”Risk! The Third Factor,” Datamation, Cathers Publishing Company, April 15,1988,
pp. 58-64.

5.6.7 Cited References

IBOE891 behm, Barry, Software Risk Management, IEEE Computer Society Press, Washington,
DC, 1989.

Version 1 Hughes STX Proprietary

Sectiun 5.7

Do’s for Project Success

Contents

5.7.1 Do’s for Project Success-Details.5.7-1
5.7.2 Cited References.5.7-3

Version 1 Soha re Engineering Guidebook Hughes STX Proprietary

S o h a r e Engineering Guidebook DO'S FOR PROJECT SUCESS 5.7- 1

Use a small senior staff for the early lifecycle phases.

Develop and adhere to an SDP.

Write down the SRS.

Define specific intermediate and end products.

Examine alternative approaches.

Perform risk analysis.

Conduct formal and informal reviews with customers and users.
Use a defined testing process.

Use a central repository.

Keep a detailed list of TBD items.

Update system size, required effort, cost, and schedule estimates.

Allocate sufficient time for testing and integration.

Experiment.

[SEL-81-205]

5.7.1 Do's for Project Success-Details

Use a small senior staff for the early lifecycle phases. Begin a project (i.e., planning and
requirements phase) with a small group of experienced professionals, especially while
preparing the SDP, setting priorities, organizing the work, and establishing reasonable
schedules. With a large team there is a tendency to try to keep people busy by beginning
design or coding before the problem has been defined.

Develop and adhere to an SDP. The SDP defines the following:

Project organization and responsibilities

Lifecycle phases
Approaches

Intermediate and end products

Approach guidelines

Standards

Product completion and acceptance criteria

CM procedures

QA procedures
Mechanism for accounting status

Product and progress reviews

Cost and schedule reviews

Contingency plans

The SDP must be made available to all the team members and must be adhered to. The SDP
must be updated throughout the software development lifecycle as needed.

Version 1 Hughes STX Proprietary

5.7-2 Do’s FOR PRWECT SUCCESS Software Engineering Guidebook

Write down the software requirements. The software requirements must be written down
and recorded early in the software development process (during the requirements analysis
phase). Recording the software requirements allows project managers to control the scope of
the project and serves as a medium of communication between the developers, customers,
software support (CM, QA), and other associated personnel.

Define specific intermediate and end products. Each lifecycle phase must have specific
intermediate and end products that define well-focused, short-term goals for the development
team. They provide the team not only with a means to measure and evaluate progress but also
with a sense of accomplishment as each product is delivered.

Examine alternative approaches. Do not assume that there is only one way of performing a
task (especially during design)-ensure that alternative approaches are considered and
evaluated in terms of project objectives and constraints, i.e., schedule, cost, team skill mix,
resources, and existing software.

Perform risk analysis. Perform a risk analysis at the start of the project. This process identifies
potential risks to the successful completion of the project within its proposed schedule and
cost. Prioritize potential risks and prepare contingency or mitigation strategies to address
those risks most likely to occur. Ensure that developers understand the risks and can alert
management early if risks begin to materialize. Review risks periodically throughout the
development process.

Conduct both informal and formal reviews with customers and users. Plan for and conduct
both types of reviews throughout the development process. Formal reviews (e.g., SSR, PDR,
CDR) and informal reviews (e.g., demonstrations of the user interface, discussions about a
specific set of requirements or portions of the design) provide a means of feedback from
customers and users, especially as to whether the developing products meet the customers’
and users’ needs.

Use a formal testing process. All of testing (unit, integration, system, and acceptance) makes
up 40%-60% of a completed project’s effort, cost, and schedule. Avoid haphazard testing,
develop a well-organized and efficient test plan, and follow it.

Use a central repository. Keep all development and material records in a central location so
that the development process and progress are visible to management and staff.

Keep a detailed list of TBD items. Classify TBD items in terms of size, required effort, cost,
and schedule. Set priorities and assign personnel to them. Monitor progress to ensure a timely
resolution.

Update system size, required effort, cost, and schedule estimates. Do not insist on
maintaining original estimates. Each phase provides new and refined information about the
problem that can be used to improve the ori@ estimates and plan more effectively.

Allocate sufficient time for testing and integration. Integration and testing are the most
sequential phases in the development process. Little can be done to reduce the work in these
phases. Avoid the common error of assuming that the integration and testing effort can be
compressed to make up for earlier slippages in the schedule.

Experiment. Resources are scarce, and technology is advancing faster than ever before; review
alternative approaches to identify areas of improvement. Acquire new skills, try new
techniques. Assess the risk of using new approaches, methodologies, and tools and plan for
increased time spent learning. Prototype risky, yet seemingly advantageous, new

Version 1 Hughes STX Proprietary

Software Engineering Guidebook DO’S FOR PROJECT SUCESS 5.7-3

technologies. Plan for technology advancement. Apply cmi techniques to continually improve
the software development process.

5.7.2 Cited References

ISEL-81 -2051 Recommended Approach for Software Development, SEL-81-205, NASA Goddard
Space Flight Center, April 1993, pp. 53-56 .

Version 1 Hughes STX Proprietary

Section 5.8

Don'ts for Project Success

Contents

5.8.1 Don'ts for Project Success-Details5.8-1
5.8.2 Cited References.5.8-2

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Software Engineering Guidebook DON’E FOR PROJECT SUCCESS 5.8- 1

Don’t overstaff.

Don’t allow an undisciplined development approach.

Don’t delegate technical details to team members.

Don’t assume that a rigid set of project-specific standards and guidelines ensures success.

Don’t assume that a large set of documentation ensures success.

Don’t deviate from the approved design.

Don’t assume that relaxing project-specific standards and guidelines will reduce costs.

Don’t assume that the pace will increase later in the project.

Don’t assume that schedule slippage can be absorbed in later phases.

Don’t assume that introducing new tools will reduce the schedule.

Don’t assume that everything will fit together smoothly at the end.

[SEL-81-205]

5.8.1 Don’ts for Project Success-Details

Don’t overstaff (this is especially dangerous in early development phases). When a large staff
is assigned at the beginning of a project, the tendency is to start designing and building the
system before the problem has been understood. Managers are frequently reluctant to admit
mistakes after a significant amount of the budget has been spent. This unwillingness to
discard work and start over will cause further problems because the remainder of the project
will be based on an invalid or incomplete set of requirements and/or design.

Don’t allow an undisciplined development approach. Software development is a very
disciplined application of a set of refined principles, methods, practices, and techniques.

Don’t delegate technical details to team members. First-line managers must know the
technical details of the project. Do not delegate this aspect of the project to the members of the
development team, especially to those on a junior level.

Don’t assume that a rigid set of project-specific standards and guidelines ensures success.
Project-specific standards and guidelines promote discipline and consistency in the software
development process and facilitate walkthroughs, reviews, and evaluation. However, the
experienced judgments and decisions of the project manager, development team leader, and
other senior personnel are necessary for the project to succeed.

Don’t assume that a large set of documentation ensures success. Each phase of the lifecycle
does not necessarily require a formally produced document to provide a clear starting point
for the next phase. The level of formality and amount of detail to be provided in the
documentation must be determined by the project size, lifecycle duration, and lifetime of the
system. For example, small projects do not require a formally produced preliminary design
document. By the time the document is prepared (edited, typed, reviewed, etc.), the design is
probably obsolete.

Don’t deviate from the approved design. As development progresses, developers may tend
to implement a slightly different design that still satisfies the requirements. The managers
must control this tendency by holding design walkthroughs. Modifications by individual
developers may be correct in the local sense but not for the system as a whole.

Version 1 Hughes STX Proprietary

5.8-2 DON’TS FOR PROJECT SUCCESS Software Engineering Guidebook

Don’t assume that relaxing project-specific standards and guidelines will reduce costs.
When a failure to meet a deadline seems imminent, managers and developers sometimes
attempt shortcuts by relaxing configuration control procedures, data collection procedures,
design formalism or coding standards. In the long run, panic actions cause greater problems
and added expense, and do not usually succeed in making the deadline anyway.

Don’t assume that the pace will increase later in the project. When design, implementation,
or testing is progressing slower than anticipated, assign additional senior personnel to help
and/or make schedule adjustments. The work rate for a given activity is characteristic of the
particular development team; it generally does not change within a short period of time. Do
not assume that the team will work faster later on.

Don‘t assume that schedule slippage can be absorbed in later phases. It is a common
mistake of managers and overly optimistic developers to assume that the team will be more
productive later on in the project. Little can be done to compress the schedule during the later
lifecycle phases-the managers should analyze the problem and take appropriate action
regarding scheduling as soon as the problem is identified.

Don’t assume that introducing new tools will reduce the schedule. Another common
mistake is to assume that using a new tool (e.g., CASE tools) will increase productivity to such
an extent that the schedule can be dramatically reduced. T i e to learn the new tool and
unrealized assumed or promised capabilities detract from schedule benefits. Introduction of
new tools to mitigate current or imminent scheduled slippage usually increases rather than
decreases schedule slippage.

Don’t assume that everything will fit together smoothly at the end. People sometimes
erroneously assume that pieces of the system will all fit together with minimal integration
effort. Problems will occur; plan ahead and schedule time for integration.

5.8.2 Cited References

[SEL-81-2051 Recommended Approach for Software Development, Software Engineering
Laboratory Series (SEL-81-205), NASA Goddard Space Flight Center, April
1993, pp. 57-510.

Version 1 Hughes STX Proprietary

Section 5.9

Danger Signals and
Corrective Measures

Contents

5.9.1 Danger Signals ... 5.9-1
Danger Signals-Details5. 9.1
5.9.1.1 Cited References5. 9.2

5.9.2 Corrective Measures .. .5. 9.2
Corrective Measures-Details5. 9.2
5.9.1.2 Cited References5. 9.2

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Software Engineering Guidebook DANGER SIGNALS AND CORRECTIVE MEASURES 5.9- 1

5.9.1 Danger Signals

Scheduled capabilities are delayed to a later build/release.

Coding is started too early (staff is too large too early).

Numerous changes are made to the initial SDP.

Guidelines or planned procedures are de-emphasized or deleted.

Sudden changes in staffing (magnitude) are suggested and/or made.

Excessive (irrelevant) documentation and paperwork is being prepared.

There is a continual increase in the number of TBD items and ECRs.

A decrease in estimated effort for system testing is suggested and/or made.

There is reliance on other sources for ”soon-to-beavailable” software.

[SEL-81-205]

Danger Signals-Details

Scheduled capabilities are delayed to a later buildhelease. What is the root of this problem?
Why did this have to happen? Was the customer involved in this decision? Was the cause one
of the high-priority risk items? What could be done next time to prevent this?

Coding is started too early (staff is too large too early). This is the trap of considering that
only the code is the ”real” product and hurrying to begin. Usually this occurs before sufficient
understanding of the problem, its requirements and design approach has been reached.

Numerous changes are made to the initial SDP. If the development plan requires numerous
updates, either the plan was not sufficiently throughout or it was too optimistic. Rather than
continuing to make small updates, take the time to reassess and rewrite the plan.

Guidelines or planned procedures are de-emphasized or deleted. There is no valid rationale
for doing this. If you are trying to save time to meet looming schedule milestones, consider the
long-term (e.g., next phase, maintenance phase) effects of this action.

Sudden changes in staffing (magnitude) are suggested and/or made. Beware of the
syndrome of adding more people to meet imminent schedule milestones. More people require
more start up time, communication, etc.

Excessive (irrelevant) documentation and paperwork is being prepared. This is definitely a
personnel demotivator. Who wants to produce a good product knowing that its only purpose
is to become a project statistic and shelfware?

There is a continual increase in the number of TBD items and ECRs. This is another morale-
deflating situation for the developers and maintainers who see the rising tide of problems. It
also causes everyone to lose confidence in the initial product.

A decrease in estimated effort for system testing is suggested and/or made. Usually this is a
result of slippages in the intermediate milestones. Reducing testing to meet the final delivery
date only reduces the quality of the product.

There is reliance on other sources for ”soon-to-be-available” software. This is definitely a
risk-prone strategy. If their software remains ‘’vaporware,” its immediate impact on your
product will be very real.

Version 1 Hughes STX Proprietary

5.9-2 DANGER SICW AND CORRECTIVE MEASURES Software Engineering Guidebook

5.9.1.1 Cited References

[SEL-81-205] Recommended Approach for Software Development, Software Engineering
Laboratory Series (SEL-81-205), NASA Goddard Space Flight Center, April 1993,
pp. 4-11414.

5.9.2 Corrective Measures

Stop current activitia and review the problem activity.

Decrease staff to a manageable level.

Assign a senior staff member to assist junior personnel.

Increase and tighten management procedures.

Increase the number of intermediate deliverables.

Decrease the scope of work and define a manageable thread of the system.

Audit the project with independent personnel and act on their findings.

[SEL-81-205]

Corrective Measures-Details

Stop current activities and review the problem activity. Focus your attention to the problem,
get it solved and then proceed with the other activities.

Decrease staff to a manageable level. It is better for all (management, staff, customers) to
have a smaller staff with greater real productivity than a larger, more costly staff with unclear
direction.

Assign a senior staff member to assist junior personnel. Assess the work currently being
asked of the junior personnel. If it is "over-their-heads" for their position, no one benefits;
assign a knowledgeable senior staff member to help.

Increase and tighten management procedures. Review management's role, view, and
participation in the development process.

Increase the number of intermediate deliverables. Intermediate deliverables provide
smaller, achievable goals. Managers, developers, and customers can assess progress more
easily by tracking these intermediate deliverables.

Decrease the scope of work and define a manageable thread of the system. This is
sometimes necessary as the problem and requirements for the product become clearer. What
was once assumed to be possible within the set schedule and cost may now not be achievable.

Audit the project with independent personnel and act on their findings. Fresh eyes and
minds can sometime help you to see the obvious, provide new approaches, and rethink the
project from a fresh perspective.

5.9.1.2 Cited References

[SEL-81-205] Recommended Approach for Software Dmelopment, Software Engineering
Laboratory Series (SEL-81-205), NASA Goddard Space Flight Center, April 1993,
pp. 4-1-23.

Version 1 Hughes STX Proprietary

Section 6

Software Support
Activities

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Software Engineering Guidebook SOFTWARE SUPFORT ACTTWTIES 6-iii

Contents

6.1 Software Configuration Management ... 6-1

6.2 Software Quality Assurance .. 6-2

Version 1 Hughes STX Proprietary

Software Engineering Guidebook S~FIWARE S U P P O R T A ~ ~ V ~ E S 6- 1

Software support (i.e., CM, QA) is one of the three major activities performed in the software
lifecycle, the other two being software development/maintenance and software project
management. In concert with the other two activities, software support is an ongoing activity
throughout the software lifecycle. It begins in the planning phase and continues through
software retirement.

The major software support activities and the subsections in which they are described are:

Software Configuration Management, Section 6.1

Software Quality Assurance, Section 6.2

Software Configuration Management (SCM) and Software Quality Assurance (SQA) activities
begin in the software planning phase by defining the SCM and SQA activities to be performed
in all subsequent phases. Defining these activities early and in concert with management and
software development planning facilitates a coordinated approach to building and
maintaining software. Planning in this coordinated manner, with input and review by
developers and maintainers, managers, and software support staff, fosters understanding of
the functions of the others and a coordinated, team approach to development. The full benefits
of such an approach can be realized at the beginning and throughout the life of the project.

Version 1 Hughes STX Proprietary

Section 6.1

Software Configuration
Management

Contents

6.1.1 Introduction6. 1.1
6.1.2 General Methodology for Software Configuration Management6. 1.1
6.1.3 SCM Tools6. 1.8
6.1.4 Tailoring to a Small Project6. 1.8
6.1.5 Suggested Reference Material6. 1.10
6.1.6 Appendix6. 1.10

Version 1 Software Engineering Guidebook Hughes STX Proprietary

Software Engineering Guidebook SOFIWARE CONFIGURATION MANAGEMENT 6.1 - 1

6.1.1 Introduction

During the software lifecycle (see Section 3.3.11, software products are created, revised, tested,
reviewed, released, and delivered and may then undergo multiple cycles of modification, test,
review, and rerelease. Software, in all its forms (e.g., requirements specification, code), is
changed repeatedly during the development and maintenance phases of its lifecycle. At some
point in the lifecycle, identified items of software need to be put under formal control,
whereby changes to the software are formally managed. This software support discipline is
SCM. Its purpose is to establish and maintain the integrity of the software throughout the
software lifecycle, without excessively encumbering those involved in the change process.

More specifically, SCM strives to:

Ensure that changes to software products are systematically controlled, monitored, and
tracked, resulting in software products containing only known and authorized changes

Establish a change process that does not hinder personnel in easily accessing and
understanding current and prior versions of the software products and their associated
changes

Managing the software and changes to it is critical for large and complex software
development and maintenance projects. As the software, environment and number of
personnel involved grow larger (e.g., increasing number of requirements, lines of code) and
more complex (e.g., interconnections between levels of requirements; between requirements
and design; and between development staff, suppliers, customers, and users), managing
changes to the software becomes more critical and must be more rigorous.

6.1.2 General Methodology for Software Configuration Management

SCM begins in the planning phase of the software lifecycle and continues throughout the
development, operations, and maintenance phases. SCM is composed of four main functions.

Configuration Identification

Configuration Control

Configuration Status Accounting

Configuration Auditing I

I

Some of the functions listed above are performed over the entire software development
lifecycle and others are phase specific. This section describes each of the four main functions
of SCM, its phase-independent and phase-dependent activities.

6.1.2.1 Configuration Identification

Configuration identification is the process of identifylng what software items will be placed
under CC, how they are to be uniquely identified (configuration identification), what
combination of versions will comprise a release (version description), and how are the releases
to be uniquely identified.

The process of identifylng what software items are to be identified as software CIS is typically
done during the preliminary software design lifecycle phase. As the functional requirements

Version 1 Hughes STX Proprietary

6.1-2 SOWARE CONFIGURATION MANAGEMENT Software Engineering Guidebook

are allocated to hardware and software and the preliminary software design is engineered, the
software CIS are designated. Configuration identification is the process of assigning a unique
identifier for each software CI. For this purpose, a CI identification scheme is created. For
example:

Configuration Identification Number = IMSVO-CSC-011 ~0.1940303

In the example above:

"IMSVW represents the Project Identification field; in this example, it is IMS Version 0.

"CSC represents the Configuration Item Category field; in this example, CSC is the
acronym for Computer System Component (also referred to as a software subsystem).

"011" represents the Identification Index field, a number from 001-999 used to

"v0.1" represents the Configuration Item Version Number field.

distinguish CSC category CIS.

"940303" represents the Version Date field in yymmdd format.

Each release of the software constitutes a software baseline and is uniquely identified.
Baselines are major points in the development and maintenance prwess where, in effect, a
snapshot of the system configuration is taken (recorded in the configuration identification
documentation). In addition to creating scheduled releases, you can create a baseline at logical
points in the developmental lifecycle. Baselines must be approved by a controlling
organization (e.g., the CCB) and form the basis for further development. In addition to the
interim software builds (internal releases) at logical points in the development effort, there are
three major baselines typical to the software development lifecycle: the functional, allocated,
and product baselines.

Functional Baseline-An accepted set of system-level functional requirements that become
the basis of the hardware and software requirements (allocated to hardware and software in
the allocated baseline). The functional baseline is usually the final output of the System
Requirements Review (SRR).

Allocated Baseline-An allocation of functional baseline requirements to system elements
(hardware and software CIS). It represents approval of the allocation and interpretation of the
requirements. The allocated baseline is usually finalized during the Preliminary Design
Review (PDR).

Product Baseline-An accepted product, including documentation. It is established at the end
of development. The product baseline is usually finalized between the systems testing phase
and the acceptance testing phase of the development lifecycle.

6.1.2.2 Configuration Control

CC is the process used to protect the integrity of the CI configuration. Proposed changes to
any CI configuration are coordinated, evaluated, approved (or disapproved), and
implemented through a disciplined process.

There are three types of software CC

Change Control-The process for requesting changes, deciding and authorizing what
changes to make, making changes, and recording the changes.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook s o m m CONFIGURATION MANAGEMENT 6.1-3

Version Control-The process of assigning initial version numbers to CIS, assigning
successive version numbers to CIS as changes are authorized and implemented, and
keeping track of the CI version numbers.

Build Control-The process of assembling the correct versions of CIS to form an
approved release, incorporating them into the release, and recording the CI versions in the
build documentation.

There are two categories of software CC: developmental CC and formal CC. The scope of
developmental CC is limited to control of CIS during the development lifecycle (the CI is
delivered to the customer for his/her approval before customer acceptance). Formal CC is
implemented after a CI has been delivered to the customer.

The developmental CC change process differs from the formal CC process in one very
important aspect: developmental CC does not require change authorization from the
customer. Developmental CC is the contractor’s internal mechanism for change control.

The formal CC process involves the same decision-making body (CCB) as the developmental
CC process, with the exception of the final change authority. In developmental CC, the
contractor’s project manager is typically the chairperson for the CCB and has the final
authority for all CI changes. In the formal CC change process, the customer‘s Contracting
Officer’s Technical Representative (COTR) is typically the CCB chairperson.

Developmental Change Control

Changes to CIS resulting from design walkthroughs or code

Changes to CIS to correct errors found during unit-level testing,

Changes to software documentation CIS to reflect changes made to

Formal Change Control

Changes to delivered CIS to correct errors found during system

Changes to delivered CIS to incorporate software enhancements

Changes to software documentation CIS to reflect changes made to

Changes to system user documentation CIS

walkthroughs

integration testing, system testing, or acceptance testing

software CIS

operation

delivered software CIS

The typical change control process entails the following procedural steps. This process is
illustrated in Figure 6.1.2.2-1.

1. An SMR is initiated and submitted to the CM staff.

2. CM staff reviews the SMR for completeness, logs it into the tracking system, and routes it
to the appropriate manager.

3. The manager determines whether it is a duplicate, is invalid, or requires analysis.
Duplicates and invalid SMRs are closed at this point. An analyst is assigned for valid
SMRs. The SMR is analyzed for feasibility, technical solution, impacts on requirements,
design, estimated time to complete change, cost, and benefit. The manager reviews the

Version 1 Hughes STX Proprietary

6.1-4 SOFIWARE CONFIGURATION MANAGEMENT Software Engineering Guidebook

SWDGO26

CM Function Comments Steps

Configuration Control 1-12

Configuration Auditing 11
Ensures all change requests incorporated
Ensures correct versions of CIS included

Ensures documentation reflects baseline

f change requests and affected CI

Figure 6.1.2.2-1. Configuration Control, Status Accounting, and Auditing

analysis for thoroughness and completeness. If it is adequate, the manager routes SMR
back to the CM staff.

4.. Upon completion of the analysis, the CM staff updates the request status and prepares it
for the next CCB meeting. The CCB makes all preparations for the next CCB meeting.

5. The CCB receives and evaluates the SMRs and approves/disapproves each SMR.
Authorized SMRs are routed for change implementation and testing.

6. Software modifications are implemented and tested in a development environment. All
changed products, results, and documentation are routed back to the CM staff.

7. CM staff updates the S M R status and prepares it for the next CCB meeting.

8. The CCB reviews the recorded implementation information and approves (or
disapproves) the incorporation of the changes into the next baseline.

9. At some point, the CCB authorizes the generation of a new baseline.

10. CM staff incorporates authorized changes into the affected baseline, updates the S M R
status records, and updates the version documentation.

11. CM staff audits the new baseline to ensure that only authorized changes have been
included and that all documentation has been updated accordingly.

12. CM staff direct and coordinate the transition of the new baseline into the operational
environment.

Version 1 Hughes STX Proprietary

Software Engineering Guidebook SOFIWARE CONFIGURATTON MANAGEMENT 6.1-5

6.1.2.3 Configuration Status Accounting

The purpose of configuration status accounting is to maintain the version status records for all
CIS and make the current status records available to management in the form of status
accounting reports. These reports include a list of the CIS, their current version numbers, and
the status of all open SMRs against those CIS.

Status accounting reports are distributed to management on a periodic basis. The report
content may vary to suit individual managers’ needs, but typically the reports are sorted by CI
identifier (to correlate open SMRs to CIS), by SMR number (to review the status of the SMRs in
chronological sequence), or by SMR priority.

6.1.2.4 Con.3guration Auditing

An audit of the configuration documentation against the actual CIS is referred to as a
configuration audit. There are two types of configuration audits: periodic and product
baseline.

Periodic configuration audits are performed by the CM staff regularly to assess the
effectiveness of the configuration identification, CC, and status accounting procedures and to
find (and correct) configuration documentation inconsistencies.

Product baseline configuration audits are performed immediately before product delivery.
The purpose of this audit is to verify that the configuration documentation completely and
accurately describes the software product baseline CIS and that all SMRs written against the
product baseline CIS have been resolved and closed.

6.1.2.5 Phase-Independent SCM

The following activity, library, and organization are performed, used, and function,
respectively, throughout many phases of the software lifecycle.

6.1.2.5.1 Continuous Identification of Configuration Items

The initial identification of CIS is done in the planning phase of development. This includes
generating a list of CIS and defining the naming conventions, standards, and procedures to be
followed throughout development and operations.

In subsequent phases, as a better and more detailed understanding of the software system
develops, new C I S are identified or modified, and new or modified conventions, standards,
and procedures are necessary.

It is the responsibility of the CM staff to manage and monitor these changes, including any
updates to documentation under CC.

6.1.2.5.2 Software Development Library

The SDL is a controlled collection of software (i.e., code and documentation) and associated
tools and procedures used to facilitate the development and operational support of the
software. The SDL is first established to control the initial documentation placed under
developmental or formal CC. These may include the SPMP, SDP, or SRS.

Version 1 Hughes STX Proprietary

6.1-6 S O ~ A R E CONFIGURATION MANAGEMENT Software Engineering Guidebook

The CM staff is responsible for physical or electronic access to the SDL, and controls the
checkin/checkout process for any changes to its contents. For example, in response to an SMR,
a programmer may check out a set of software modules to update them. Following final
authorization by the CCB that the modifications were correctly made and tested, the CM staff
would then check in the updated modules.

The SDL contains all the software that was controlled through both developmental and formal
cc.

6.1.2.5.3 Configuration Control Board

The CCB is a group of technical and managerial personnel who approve or disapprove any
changes to CIS currently under CC. They also approve or disapprove waivers or deviations to
the CIS currently under CC.

The CCB is the authorization organization for both the developmental and formal CC process.
For developmental CC, the software project manager is usually the chairman; customer
participation may be only as a nonvoting member. The customer, is however, the chairman of
the CCB for the formal CC process. As such, he or she has final authority over changes to CIS.

The CM staff are usually board members and are responsible for administratively and
technically supporting the board meetings.

6.1.2.6 Phase-Dependent SCM

6.1.2.6.1 Planning Phase

Planning for each of the SCM functions is conducted in the project planning phase.

Configuration identification planning includes initial identification of
baselines and the software items comprising the baselines, the associated
development phase when each baseline is to be produced, the review and
approval events including acceptance criteria for each baseline, and defined
procedures to label and catalog both software code and documentation.
Configuration control planning includes definition of the level of authority
for change approval for the lifecycle phases, methods to be used in
processing change proposals to established configurations, methods of
implementing approved change proposals, procedures for software library
control, methods for CC of interfaces with external systems/organizations,
and control procedures for associated software (e.g., Commercial Off-the-
Shelf (COTS), in-house support software).
Configuration status accounting planning includes defining how status
information on CIS will be collected, verified, stored, processed, and
reported; identifymg what periodic reports are to be provided and
distributed to whom; and describing how to implement any special status
tracking requirements.

place, what CIS are to be audited, the role of CM staff in these audits, and
the procedures to be used in the identification and resolution of problems
found from the audits.

Configuration audit planning includes defining when audits are to take

Version 1 Hughes STX Proprietary

Software Engineering Guidebook SOFIWARE CONFIGURATION MANAGE ME^ 6.1 - 7

The planning results are documented in the Software Configuration Management Plan
(SCMP). The SCMP describes the four main functions of SCM as well as the organizations and
personnel involved in the change process and their roles and authority.

The SCMP consists of two major sections: management and CM activities. The first section
describes the organizations associated with CM (i.e., their authority, responsibility, and
relationships). Such organizations are the CCB, the software development group,
management, the CM staff itself, the QA staff, and possibly other personnel responsible for
external systems. The SCMP also describes the interfaces between these organizations as well
as the schedule for CM implementation (e.g., milestones for creating the CM staff, CCB,
software baselines). The second section describes the major activities to be performed under
each of the four functions of SCM.

At the end of the planning phase the Software Project Management Plan (SPMP), Software
Development Plan (SDP), QA Plan and SCMP are placed under developmental CC. The S M R
can be used as the vehicle for requesting changes to these plans (and all other controlled
documentation), precluding the necessity for creating another form that would follow
essentially the same process as the SMR.

6.1.2.6.2 Requirements Analysis Through Operations and Maintenance

Table 6.1.2.6.2-1 delineates SCM activities by phase.

Table 6.1.2.6.2-1. SCM Activities by Phase

Major SCY Activities

Planning Develop the SCMP
Place planning documents under developmental CC.
Establish and control the Software Development Library (SDL).

Requirements Analysis
Perform a configuration audit before delivery of Software Requirements Specification (SRS)
Support requirements analysis and documentation development using developmental CC.

and Interface Requirements Specification (IRS).
Place the SRS and IRS under formal CC.
Track the status of ECRs, SMRs, and resuning modifications to CIS.

Preliminary Design Support design and document development using developmental CC.
Establish and support a CCB to review proposed changes to CIS under CC.
Track the status of ECRs, SMRs, and resulting modifications to CIS.

Detailed Design Support design and documentation development using developmental C C .
Perform a configuration audit before delivery of the SDD.
Place the SDD under operational CC.
Support the CCB in reviewing proposed changes to CIS under CC.
Track the status of ECRs, SMRs, and resuiting modifications to CIS.

_ _ _ _ ~

Code and Unit Test Place unit-tested modules unde! developmental CC.
Support the CCB in reviewing proposed changes to CIS under CC.
Track the status of ECRs, SMRs, and resulting modifications to CIS.
Perform configuration audits as necessary.

~~

Integration Testing Following successful testing, place the software subsystems under developmental CC.
Support the CCB in reviewing proposed changes to CIS under CC.
Track the status of ECRs, SMRs, and resulting modifications to CIS.
Perform configuration audits as necessary.

Version 1 Hughes STX Proprietary

6.1-8 s o m m CONFIGURATION MANAGEMENT Software Engineering Guidebook

Table 6.1.2.6.2-1. SCM Activities by Phase (Continued)

Lifecycle Phase Major SCM Activities

System Test Following successful testing, place the software systems under formal CC.
Perform a configuration audit before delivery of software.
Support the CCB in reviewing proposed changes to CIS under CC.
Track the status of ECRs, SMRs, and resulting modifications to CIS.

_ _ _ _ _ _ _ _ _ ~ ~ _ _ _ _ _ _ _ ~ ~ ~ ~ ~

System Acceptance Support the CCB in reviewing proposed changes to CIS under CC.
Track the status of ECRs, SMRs, and resulting modifications to CIS.

Operations and Mainte Perform a configuration audit on each new release of the software.
nance Support the CCB in reviewing proposed changes to CIS under CC.

Track the status of ECRs, SMRs, and resulting modifications to CIS.

~~~~~ 

6.1.3 SCM Tools 

Software  tools  are  available  for  software CC  from  "freeware"  sources  and  software  vendors.  In 
the freeware  category,  a Unix utility  titled  Revision  Control  System (RCS), distributed  by The 
Free  Software  Foundation,  is  available  and  works quite well.  The  only  drawback  is that you 
must be developing on a Unix platform. A predecessor of  RCS, Source  Code  Control  System 
(SCCS),  is  also  available  for Unix platforms.  Aegis,  distributed under the  terms of the GNU 
General  Public  License, is characterized as a  "project  change  supervisor"  (Unix  environment). 
Commercial  tools  include: 

CCC/Harvest by  Softool 

ClearCase  by  Atria  Software 

CMS  by  Digital  Equipment  Corp. 

Endeavor  by  Legent  Corp. 

PVCS  by Intersolv 

CCC/Harvest and ClearCase  operate in the Unix environment. CMS operates  in  the VMS 
environment. PVCS works  in  Windows NT, MS-DOS, OS/2, AD(, Sun OS and  Solaris, HP-UX, 
and SCO  Unix environments. 

6.1.4 Tailoring to a Small Project 

Tailoring  the  information  provided  in  this  section  is  essential  for  defining  and  implementing 
SCM in your project or task.  Regardless of project  size,  the S C M  function  needs  to be 
performed at some  level.  Only the level of detail,  process rigor, and products  vary  among 
projects.  Some of the  tailoring  factors  to be considered  are: 

Time 

Resources 

Complexity 

Contractual  commitments and requirements 

Intended  use of the  product 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWARE CONFIGURATION MANAGEMENT 6.1-9 

One  tailoring  strategy is to  take  each of the four elements  one at a  time,  decide  what  the 
minimum  requirements are for  each  (for  a streamlined, but effective  process), and determine 
the least  cumbersome  implementation.  The  results of this  tailoring  should  be  documented in 
the SCMP.  Most likely the SCMP  itself should be  a  less  formally  produced  document,  yet  still 
capture the  essential SCM process,  procedures, and activities.  The  following  is  an  approach  for 
tailoring  each of the SCM functions. 

6.1.4.1 Tailoring the Configuration  Identification  Process 

Tailoring  configuration  identification is relatively straightforward. First,  determine  the 
categories of the software  CIS  (e.g.,  programs,  subsystems,  modules).  Determine the likely 
maximum number of  CIS in each  category  (e.g., 1-10,10-100). Next, determine the minimum 
information  required  to  differentiate  between  CIS and how  much other information  is 
practical  to include in the identifier.  In the example in Section 6.1.3.1, the project,  CI  category, 
an index  number,  version, and date were included. You may decide that  you  need  only the 
category,  index, and version  number. You may  find that for  documents you need  to add a 
subcategory.  The  identifier must convey at least the minimum  information required to 
differentiate  behoeen all Cls. Anything  in the identifier  beyond that is for  convenience. 

6.1.4.2 Tailoring the Change Control Process 

Tailoring the CC  process is more  challenging. You need to  consider the following and tailor 
each  to your particular  project: 

Change authority (CCB) 

CCB process 

Vehicle  for documenting and tracking  changes (SMR form) 

Process  controls (managers at key  decision points) 

Status information capture and recording  process 

Process standards for  change  analysis,  implementation,  testing, and baseline  integration 

SMR closure  criteria 

For  example, on your project an actual CCB may  be  impractical;  change  authorization  may 
reside  with one person. Information capture may  be  sufficient at the beginning and end of the 
change process.  Problem/enhancement impact analysis may  be  limited  by  schedule and 
resource  constraints. SMRs  may be produced only  for  essential,  high-priority  changes. SMRs 
may  be  allowed  to go from  analysis  to implementation and through testing  without 
management  review and control. 

6.1.4.3 Tailoring the  Status  Accounting  Process 

Tailoring the status accounting  process is straightforward. The nature of status accounting  is, 
simply,  good  recordkeeping.  First, determine the minimum information  necessary  to report 
the status of each  CI.  Typically,  this is the CI  name,  identifier,  version  number,  version date, 
the change status, and which open SMRs are written against that CI  (if any). This  information 
can  be  recorded manually or in a data base program. Common  sense  says  that  the  key  to 
credible status accounting  records (as with any records) is the  frequency and accuracy of your 
record updates. 

Version 1 Hughes STX Proprietary 



6.1 - 10 SOWARE CONFIGURATION MANAGEMENT Software Engineering Guidebook 

6.1.4.4 Tailoring the Configuration  Audit  Process 

SCM audits are essentially  the  same  process  regardless of the  project  development  rigor. 
Auditing  new  baselines  before  they  are  made  operational is still  required  to  ensure  that  the 
correct  versions of the CIS  are  included  in  the  new  baseline.  Tailoring of internal audits (i.e., 
configuration  documentation  is  selected  randomly  for  verification  and  compared  to  the  actual 
CI, and the  results of the  comparison  are  recorded and reported  to  project  management) is 
easily  achieved  by  reducing  the  frequency of the audits and the number of records  sampled 
for  each audit. As you would  for  any  process,  decide what is practical,  write  the  procedure, 
implement the process, and modify  it  over  time  to  correct  inadequacies. 

6.1.5 Suggested  Reference  Material 

“IEEE Standard Glossary of Software  Engineering  Terminology,” IEEE-STD-610,  ANSI/IEEE 
Std 610.12-1990, February 1991. 

“IEEE Standard  for  Software  Configuration  Management  Plans,” IEEE-STD-828,  ANSI/IEEE 
Std 828-1983, June 1983. 

“Configuration  Management,” MIL-STD-973, Military Standard 973, April  1992. 

”Configuration  Management  Plan, Data  Item  Description,”  NASA-DID-600,  NASA-STD- 
2100-9,l  NASA  Software  Documentation  Standard,  Software  Engineering  Program,  July  1992. 

6.1.6 Appendix 

6.1.6.1 Sample  Tables  of  Contents 

1 .o 
2.0 
3.0 
4.0 

5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
11.0 

Introduction 
Reference  Documents 
Organization 
Configuration  Management  Phasing and 
Milestones 
Data  Management 
Configuration  Identification 
Interface  Management 
Configuration  Control 
Configuration  Status  Accounting 
Configuration  Audits 
SubcontractorNendor  Control 

- 
Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWARE CONFIGURATION MANAGEMENT 6.1 - 1 1 

1 .o 

2.0 

3.0 

4.0 
5.0 
6.0 

Introduction 
1.1 Purpose 
1.2 scope 
1.3 Definitions  and  Acronyms 
1.4 References 
Management 
2.1  Organization 
2.2  SCM  Responsibilities 
2.3  Interface  Control 
2.4  SCMP  Implementation 
2.5 Applicable  Policies,  Directives, and Procedures 
SCM Activities 
3.1 Configuration Identication 
3.2  Configuration  Control 
3.3  Configuration  Status  Accounting 
3.4  Audits  and  Reviews 
Tools, Techniques,  and  Methodologies 
Supplier  Control 
Records  Collection and Retention 

Version 1 Hughes STX Proprietary 



Section 6.2 

Software Quality 
Assurance 

Contents 

6.2.1 Introduction ................................................. .6. 2.1 
6.2.2 General  Methodology  for  Quality  Assurance ..................... .6. 2.2 
6.2.3 Tailoring  to  a  Small  Project .................................... .6. 2.10 
6.2.4 Suggested  Reference  Material ................................. .6. 2.10 
6.2.5 Appendix ................................................... .6. 2.11 

Version 1 Software  Engineering  Guidebook Hughes STX Proprietary 



Software Engineering Guidebook S O ~ A R E  Q U ~ A S S U R A N C E  6.2- 1 

6.2.1 Introduction 

It is  important to understand that QA does not automatically guarantee quality software. QA 
ensures that the project team is developing software according to an approved plan and that 
the software will satisfy the specified requirements. QA does not determine whether the 
software requirements are complete and accurate. The entire project team, which includes 
software engineering, software management, software CM, Independent Test Organization 
(ITO), and software QA, works together to build quality into the software products. 

The degree to which a product meets its specified requirements and to which the project team 
follows approved  methods  and procedures is clearly the responsibility of the project managers 
and functional managers. 

An important role that a QA organization can perfom  is systematically and continuously 
collecting defect data, analyzing those data, and making recommendation for improvements 
to project management, using continuous measurable improvement (cmi) techniques. 
Properly used, defect trend data can help an organization reach new levels of quality while 
substantially reducing the normal costs  associated with  the production software. 

The overall quality objective  is  to ensure that the software products are suitable for use by the end 
user. 

The software should satisfy the need for which it  was  intended. All organizations have 
responsibility for quality. All organizations should conduct their activities in a consistent 
manner in  support of the quality mission. 

The QA organization provides the structure, discipline, methods, and procedures to ensure that the 
software products meet their specified  characteristics in support of the global quality mission of 
ensuring that the software is suitable for use by the end user. 

I The specific goals of QA are to: 

Establish and perform the necessary evaluations and procedures for the systematic evaluation of 
software development processes and products. 

Assure management, both company and project, that the established and approved applicable 
standards  and methods are used for the development, evaluation, control, and delivery of software 
products (both developmental and nondevelopmental as well as deliverable and applicable 
nondeliverable). 

Collect relevant quality data consistently across  all  projects, analyze the data, perform defect/ 
discrepancy trending analysis, recommend  corrective  actions, and report the information to 
management and clients, as required. 

Ensure that product and process-related  deficiencies are identified, analyzed, tracked, and 

Develop an efficient and effective  Software Quality Assurance Plan implementing all  relevant 

0 Assist all organizations in  the evaluation process of self inspection with the intent of achieving 

appropriately reconciled. 

requirements from company policy and customer contract. 

continuous improvement throughout the project. 

Version 1 Hughes STX Proprietary 



6.2-2 s o m a  Q U ~  ASSURANCE Software Engineering Guidebook 

6.2.2 General  Methodology  for  Quality  Assurance 

Each  project  develops  a  project  Software  Quality  Assurance  Plan (SAP)  for  software if 
software is being  developed  or  delivered as part of the project  requirement.  The  plan  will 
define QA's  role, as part of the  project  team,  in supporting the  development of the software 
product. The  intent of the plan  is to tailor an effective and efficient QA process  based on company 
guidelines, the contract, and the needs of the project. The plan is a  living  document and must  be 
continuously  evaluated  for  change.  External  customer  needs and project  characteristics  often 
influence  the  need  for  change to  all  project  plans. 

There  are two basic  types of evaluations  that  are  conducted by the QA function.  One  is the 
evaluation of a  process  or  activity  that  is  used in the production of a  software product, its 
validation, or its control. This is  a  process  evaluation.  Process  evaluations  are  characterized  by 
the systematic  review of processes  to ensure that  they  are  conducted in accordance  with 
approved and documented  methodologies. 

Another is the evaluation of products  that are used or developed as part of the product and/ 
or its operating environment, and products that are used  to  manufacture,  test, or control the 
product. These  evaluations  are  product  evaluations.  Product  evaluations  are  Characterized by 
the close  examination of a  product  such as data, computer programs,  designs, and 
documentation. 

6.2.2.1 Phase-Independent  Quality  Evaluations 

Some QA activities  are  performed during all phases of the  software lifecycle.  These  repetitive 
tasks include monitoring  activities  for  compliance  to  plans and procedures and evaluating 
documentation. 

6.2.2.1.1 Evaluation  of  Corrective  Action  Process 

The  problem  reporting,  analysis, and change  activity is the  responsibility of project 
management, but the  tasks  are  generally  performed  by  all  team  members.  The  QA  will  verify 
that the  following  actions  are  complete  or items correct: 

Ensure that the  project  has  a  defined,  closed-loop  methodology  for  collecting and 
analyzing  problem  reports  and  that appropriate changes  are  made  to  the  project  products. 

Evaluate the problem data to ensure  that  they  collect  the  required  information,  including 
classification and priority. 

Ensure that the  qualification  testing of changes is adequate to ensure  that no new 
problems are introduced  and  that  the  changes  satisfy  their  intended  purpose. 

Ensure that the  project  defect data are included in the  statistical data used  to  analyze 
process trends. 

Ensure that the  process  trend  analysis is available  to  the  project  management  for its 
review and action. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook S o n w e  QUAL~NASSURANCE 6.2-3 

6.2.2.1.2 Evaluation  of  Software  Plans 

It is  the responsibility of the software project  manager,  to ensure  that there is an  adequate 
schedule and  budget for the proper review and correction of all software plans (e.g., SPMP, 
SDP,  SCMP, SQAP). The QA analyst will verify that the following are complete and/or correct: 

The plan is reviewed and problems are identified in a timely manner prior to the delivery 
to the customer. 

The document is reviewed for compliance to the contractual requirements. 

The document is internally consistent. 

The document is consistent with other project plans, and all schedules are consistent. 

The plans have been distributed, and project personnel have been informed of the  plans 
and their requirements. 

6.2.2.1.3 Evaluation  of  Software  Management Activities 

The QA analyst will perform these evaluation tasks at  any appropriate time during the 
software development lifecycle.  The  QA analyst will  verify that  the following are complete 
and/or correct: 

Appropriate management practices are adequately specified by the SPMP. 

Practices are contractually compliant. 

Practices described in the planning documents are implemented. 

Results of the activities are recorded. 

6.2.2.1.4 Evaluation  of  Software  Configuration  Management Activities 

The QA analyst will perform evaluations of  SCM tasks at  any  appropriate time during  the 
software development lifecycle. The QA analyst will  verify that  the following actions are 
complete and/or correct: 

Appropriate CM practices are adequately specified  by the SCMP. 

CM  practices are contractually compliant. 

Practices implemented by the planning documents are routinely followed. 

Results of the CM activities are recorded. 

6.2.2.1.5 Evaluation  of  Software  Engineering Activities 

These software engineering evaluations will be conducted regularly during  the project 
lifecycle at the discretion of the QA analyst. The QA analyst will verify that  the following 
actions/items  are complete and/or correct: 

The engineering practices to be used  on  the project are consistent with the SDP, applicable 
company guidelines and contractual requirements. 

All personnel have  had  adequate training or experience with  the  standards  and methods. 

Version 1 Hughes STX Proprietary 



6.2-4 SOFIWARE  QUAL^ ASSURANCE Software Engineering Guidebook 

Practices and procedures  defined  and  incorporated  into  the  project  methodology are 
routinely  followed. 

6.2.2.1.6 Evaluation  of  Software  Testing and Qualification  Activities 

The  evaluation  criteria  for  software  testing and qualification  activities  are independent of any 
particular phase and are  oriented more  to the  management of the  test and qualification 
activity rather than the specific  execution of phase-dependent  tasks.  The QA analyst  will 
venfy that the  following actionshtems are  complete and/or correct: 

The planning for  test  activities  is  timely,  defined, and documented in accordance with the 
management  plans.  These  activities  are  conducted  according to and in total  compliance 
with the  contract. 

Reviews of the  test  activity  are  conducted in accordance with all plans and schedules. 

Test  team  members  have  defined standards and methods  that  are  documented  for this 
project. 

The standards and procedures for  test and test  documentation  are  routinely  followed. 

6.2.2.1.7 Evaluation  of  Software  Development Library 

The  software  management  function  is  responsible and accountable  for  the  proper  and 
contractually  compliant  operation of the SDL activities in all  phases of the  program.  The QA 
analyst  will  verify  that the following SDL related actions/items are  complete and/or correct: 

The SDL has been  systematically  planned,  the plan has been  documented, in the SDP and 
there are  procedures  for  the  operation of the SDL. 

The SDL is operated in accordance with the approved methodologies, and procedures are 

The approved procedures  and  methods are adequate in safeguarding  the  developing 

identified as applicable  to  the project. 

product and providing controlled  access  to the current  versions of the  configuration items 
as well as providing the capability  to  reconstruct any previous  version. 

6.2.2.1.8 Evaluation  of  Software  Storage,  Handling and Delivery 

The  software  management  function  is  responsible and accountable  for  the  proper and 
contractually  compliant  operations of storage, handling, and delivery  activities in all  phases of 
the  program.  The QA analyst  will  verify  that  the  following  processes are accurate and/or 
complete: 

The  activities  have  been  systematically  planned and documented, and there  are 

The  activities  are operated in accordance with the approved methodologies,  and 

procedures  for  implementation. 

procedures are identified as applicable  by  the  project. 

The  activities  have approved procedures and methods that are adequate in safeguarding 
the products from  physical  damage and loss and that ensure contractual  compliance. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook s o m a  QUAL~NASSURANCE 6.2-5 

6.2.2.1.9 Evaluation  of  Software  Media  and  Documentation 
Distribution 

The software management function is responsible and accountable for the proper and 
contractually compliant document  and media distribution activities in all phases of the 
program. The QA analyst will verify that the following processes are complete and/or correct: 

Document and media distribution have been systematically planned, the  plan has been 
documented, and there are procedures for implementation. 

Distribution is conducted to the approved methodologies, and procedures identified as 
applicable by the project. 

Distribution procedures and  methods  are  adequate  in  ensuring  that  the distribution of 
documentation and media is complete and timely and that they are contractually 
compliant. 

6.2.2.1.10 Evaluation  of  Subcontract  Management 

Software project management and functional management are responsible and accountable 
for the  proper application of the software engineering processes in all phases of the program. 
The QA analyst will verify that: 

The contract is complete and  is a flowdown of the requirements in the  prime contract 
and/or company procedures to ensure that the subcontracted element is produced in a 
manner that is consistent with  the rest of the system. 

The contracted elements have clearly stated physical, performance, and functional 
requirements, including timing and sizing requirements. 

The contract clearly defines the schedule of events and activities and includes 
management reviews. 

The management procedures for oversight of a subcontractor are defined and these 
procedures are followed. 

The subcontractor’s products  are evaluated for functional and physical characteristics 
prior to acceptance. 

6.2.2.1.1 1 Evaluation  of  Software  Documentation 

Software project management is responsible and accountable for the  proper  and complete 
documentation of its products in accordance with  the contractual and company requirements. 
The QA analyst will verify that  the following actions/items are complete and/or correct: 

Each document  is compliant with  its contractual requirements, including content and 
format. 

Each document defines the  appropriate level of information consistent with  its purpose. 

The contents of each document flow from a higher level document and the document  does 
not introduce new requirements. 

The contents of each document  are accurate, correct, not redundant,  and technically 
consistent with other documents  and  with itself. 

Version 1 Hughes STX Proprietary 



6.2-6 S O W A R E  QUALITY ASSURANCE Software Engineering Guidebook 

Documents  are  produced  in  accordance  with  the  processes  defined  for  the  project, 

Documents  are  produced in accordance  with  published  schedules and are  available 

0 Documents  are  placed into formal CC prior  to  the  delivery  to  the  customer, and all 

including  reviews,  review cycles, and  distribution  lists. 

within  the appropriate phase of the  project. 

changes to approved and controlled  documents are correct and approved before  they  are 
made. 

6.2.2.1.12 Evaluation of Software 

Project software  development and management are responsible and accountable  for  the 
accurate and correct  coding of its products in accordance with the  contractual and company 
requirements.  The QA analyst  will  verify  that: 

All software  that  is  developed and deliverable is written to  conform  to  the  contractual 
requirements and the company  guidelines and specifications approved for the project, 
including  maintainability,  timing, and sizing  requirements. 

Software that is deliverable, but was  not  developed by the project, is contractually 
compliant,  adequately  documented,  qualified  for  use by examination  or  test,  and 
appropriately licensed and has the Government data rights defined. 

All software  that  is  developed  for  use in the product or that is  used to  test  or  develop  the 
product is in compliance with its technical  definition,  including its development  folders 
and design documentation, and is properly  used  for  the  function  for  which it was 
intended. 

All software  has  been  tested  to  approved  procedures,  demonstrates  the  implementation of 
all  applicable  requirements, and is  suitable  for  end-user  use. 

All software  used on the project is properly  classified,  controlled,  maintained,  defined, 
and protected  from  intentional  and  unintentional  unauthorized  change. 

All software  meets  all  established  criteria  for  the  product,  such as internal consistency, 
traceability of code  to  the design and interface  documents, and understandability. 

6.2.2.2 Phase-Dependent  Quality  Evaluations 

These  are the software  quality  functions  that apply to  the  activities and products specific  to  a 
software  lifecycle  phase. 

6.2.2.2.1 System  Requirements  Analysis/Design 

Software  project  management is responsible  and  accountable  for  the  proper and complete 
documentation of their products in accordance with the contractual and company 
requirements and for  the proper application of the  software  engineering  processes in all 
phases of the  program.  The QA analyst  will  verify  that: 

System  requirements  review is supported as  specified in the  contract. 

System  Design  Review is supported as specified in the  contract. 

0 System  requirements are consistently  and  completely  specified and have  been  allocated 
appropriately to the  software  systems as documented in the  System  Design  Document. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook soma Q U ~ A ~ ~ U R A N C E  6.2-7 

Preliminary software requirements are defined in  the preliminary SRSs. 

Preliminary interface requirements specify each external interface to each software system 

The preliminary set of qualification requirements for each software system is defined in 

The qualification requirements are consistent with  and traceable to the qualification 

and are documented in the preliminary IRS. 

the preliminary SRS. 

requirements defined in the system specification and  are documented in a  cross-reference 
document. 

All preliminary software documents, the SRS and IRS, are placed under developmental 
cc. 

6.2.2.2.2 Software  Requirements Analysis 

Software project management is responsible and accountable for the proper and complete 
documentation of its  products  in accordance with  the contractual and company requirements 
and for the  proper application of the software engineering processes in all phases of the 
program. The QA analyst will verify that: 

Software Specification  Reviews (SSRs) are conducted in accordance with contractual 

The SRSs and the IRss are authenticated by the contracting agency  to form the allocated 

requirements. 

baseline. 

A complete set of software requirements has been specified, and the appropriate SRSs 
have been updated. 

A complete set of requirements for external interfaces for all software systems is specified, 
and  the IRS is completed. 

The final SRSs and  the final IRSs are placed into formal CC. 

The qualification requirements are completely defined for each software system and 
documented in the SRS. 

The requirements are traceable to the qualification requirements defined in  the system 
specification, and this traceability is documented as defined in the management plans. 

6.2.2.2.3 Software  Preliminary  Design 

Software project management is responsible and accountable for the proper and complete 
documentation of its  products in accordance with  the contractual and company requirements 
and for the  proper application of the software engineering processes in all phases of the 
program. The QA analyst will verify that: 

Preliminary Design Reviews  (PDRs) are conducted in accordance with contract 
requirements. 

preliminary Software Design Document (SDDs). 
Preliminary designs for each software system are adequately detailed and defined in  the 

The design for external interfaces is adequately detailed in the preliminary IDD. 

Version 1 Hughes STX Proprietary 



6.2-8 SOFIWARE QUALlTY ASSURANCE Software Engineering Guidebook 

Test requirements  for  subsystem  testing  are  established and recorded  in  the  Software 
Development  Files  (SDFs). 

All appropriate engineering  information  is  defined in the SDD. 

The  Software Test Plan (SF), preliminary  Software  Design  Document  (SDD), and the 
preliminary  Interface  Design  Documents  (IDDs) are placed under developmental CC. 

The  formal  qualification  tests  for  each  software  system are documented in the STP. 
The plans are clear,  concise, and executable. 

The  necessary  resources  are  scheduled, and configurations are identified  for  each  software 
system  qualification  test. 

6.2.2.2.4 Software  Detailed  Design 

Software  project  management is responsible  and  accountable  for  the proper and complete 
documentation of its products in accordance with the  contractual and company  requirements 
and for  the  proper  application of the software  engineering  processes in all  phases of the 
program.  The QA analyst  will  verify  that: 

Critical  Design  Reviews  (CDRs)  are  conducted in accordance with contract  requirements. 

The  detailed  designs  for  the  software  systems and for the external  interfaces  for  each 
software  system are documented  in  the SDD and IDD,  respectively. 

The  detailed designs include  the  design  requirements  for  subsystems. 

The  test  responsibilities,  test  cases, and schedules  for  module  testing and subsystem 
integration and test are complete and recorded in the SDFs. 

The  SDD is updated with additional engineering data, if appropriate. 

Each software system has defined test cases  that are documented in the STD document  or 
equivalent as defined  by  the  management  plans. 

The  test  cases  for  each  software  system are adequate to  test  the  performance of the 
software  system. 

The  final  IDDs and the Software Test Descriptions (STDs) are placed under formal CC. 

6.2.2.2.5 Software  Coding  and  Module  Testing 

Software  project  management is responsible and accountable  for the proper and complete 
documentation of its products in  accordance with the  contractual and company  requirements 
and for  the  proper  application of the software  engineering  processes in all phases of the 
program.  The QA analyst  will  verify  that: 

The  SDDs  have  been  properly updated with  all  approved  changes. 

Modules are coded,  test  procedures  are  developed,  modules  are  tested, and appropriate 
documentation is updated. 

examined,  tested  or  analyzed, and evaluated, is placed under developmental CC. 
The  module  source  code,  which has been  successfully  compiled,  link edited, executed  or 

Subsystem  test  procedures  are  developed and documented in the SDFs. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook SOFIWARE QUAL~NASSURANCE 6.2-9 

6.2.2.2.6 Subsystem  Integration  and  Testing 

Software project management is responsible and accountable for the proper and complete 
documentation of its  products  in accordance with the contractual and company requirements 
and for the proper application of the software engineering processes in all phases of the 
program. The  QA analyst will verify that: 

Test Readiness Reviews (TRRS) are conducted in accordance with contract requirements. 

Subsystem integration and testing is accomplished in accordance with the documented 
procedures and  the results documented in the SDFs. 

Appropriate  design documentation and code are  updated correctly as a result of the 
testing. 

Each software system test case, previously defined, has documented procedures to invoke 
the test. 

The tests have been conducted and  the results documented, reviewed, and  approved to 
allow the software system to progress to formal qualification testing. 

The properly updated design documents  and source code for  successfully  tested 
subsystems are placed under developmental CC. 

6.2.2.2.7 System  Testing 

Software project management is responsible and accountable for the proper and complete 
documentation of its  products  in accordance with  the contractual and company requirements 
and for the proper application of the software engineering processes in all phases of the 
program. The QA analyst will verify that: 

Version Description Documents (VDDs) are produced for each successfully  tested 
software system. 

All necessary documentation for the Functional Configuration Audit (FCA) and Physical 
Configuration Audit (PCA) is produced. 

Documentation is revised as necessary in response to the software system testing, and the 
Software Product Specification (SPS) is appropriately  produced. 

Updated source code is produced for  delivery. 

Each software system is formally tested, and  the results are documented, reviewed, and 
approved as demonstrating that the software system meets its intended use. 

The source code is appropriately updated  and validated and  is demonstrated to be 
consistent with  the sum total of its documented technical definition. 

6.2.2.2.8 Acceptance  Testing 

Software project management  is responsible and accountable for the proper and complete 
documentation of its  products in accordance with  the contractual and company requirements 
and for the proper application of the software engineering processes in all phases of the 
program. The QA analyst will verify  that: 

FCAs are supported  in accordance with the contract requirements. 

PCAs are  supported  in accordance with the contract requirements. 

Version 1 Hughes STX Proprietary 



6.2- 10 SOFTWARE QUALITY ASSURANCE Software Engineering Guidebook 

Physical and functional audit actions  items  are  closed in accordance  with  the  contractual 

All approved  changes to  the  software  and its technical  definition  are  properly  made. 

The  system,  including  all CIS, has  been  formally  tested,  the  results  documented, and 

All source  code is updated and is  consistent with the sum total of its technical  definition. 

The  Software  Product  Specifications,  after FCA and PCA authentication by  the 
contracting agency, are placed  into  formal  configuration  control  to  form  the  product 
baseline. 

requirements. 

accepted  by  the  customer as suitable  for  their  use. 

6.2.3 Tailoring to a Small Project 

Each  project is unique.  The  quality  needs of the  project  vary depending on many  factors.  Some 
of the  factors  to  be  considered in planning  a  quality  program  are: 

The  consequence of failure of the  product  or any of its discrete  elements 

The  source of elements of the  product  such as COTS, customer  furnished,  contractor 
furnished, and reusable  code  elements 

Tools available  for use (e.g.,  dynamic and static  code  analyzers) 

Relative  complexity and size of the  project 

Developmental and support staffing on the  project 

These  factors  have  a  direct  bearing  on  the  implementation of the  tasks  to  be  performed and on 
the  allocation of resources. 

Consideration  must be given to  the  frequency of evaluations to  be  performed on the  contract. 
Few contracts  require 100% of all  items to be  inspected, but that is  the  most  frequent  approach 
used by  QA.  What  effort of inspection  and  analysis is reasonable to ensure the  quality of the 
product is dependent on all of the  other  factors  being  considered. 

The  key  function of QA is to  implement cmi by  collecting  defect  data,  analyzing  those data, 
and working with the  project  team  to  implement  corrective  actions  to  reduce  errors. 

6.2.4 Suggested  Reference  Material 

Automatic  Dependent  Surveillance  (ADS)  Computer  Software  Quality  Program  Plan,  Hughes 
STX Corp.,  August  1991. 

”Software  Quality  Assurance  Plan,” DOD-STD-1703, Department of Defense  Standard-1703, 
February  1987. 

“Software  Quality  Program  Plan,” DOD-STD-2168, Department of Defense  Standard-2168, 
April  1988. 

”Defense  System  Software  Development,” DOD-STD-2167A, Department of Defense, 
February  1988. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook S O ~ A R E  Q U ~  A ~ ~ U R A N C E  6.2- 1 1 

6.2.5 Appendix 

6.2.5.1 Sample  Tables of Contents 

1 .O Introduction 
1.1  Purpose 

1.3 Applicable  Documents 
1.2 scope 

1.3.1  Customer  Documents 
1.3.2  Developer  Documents 
1.3.3 Project-Specitic  Documents 

1.4  QA  Plan  Maintenance 
1.5 Project  Software  Development  Cycle 

2.0 Quality  Assurance  Organization 
2.1  QA Operational  Responsibilities 
2.2  QA Program  Responsibilities 
2.3  QA Reports 

3.1 Quality  Standards  and  Procedures 
3.2  Audits 
3.3  QA Participation in Reviews,  Audits,  Control 

Boards 
3.4  Test Monitoring 
3.5  Discrepancy  Control  Monitoring  and  Review 
3.6 Tools, Techniques,  and  Methodologies 

4.0 Quality  Assurance  Application  Areas 
4.1  Work  Tasking and  Authorization 
4.2 Configuration  Management 
4.3  Testing 
4.4  Computer  Program  Design 
4.5 Computer  Program  Development 
4.6  Software  Documentation 
4.7 Library  Controls 

3.0 Quality  Assurance  Functions 

Version 1 Hughes STX Proprietary 



6.2- 12 S O ~ A F E  QUM ASSURANCE Software Engineering Guidebook 

1.0 Scope 
1.1 Identification 
1.2 Purpose 
1.3 System  Overview 

2.0  Referenced  Documents 
3.0  Organization  and  Resources 

3.1  Organization 
3.2 Resources 

3.2.1 Contractor  Facilities  and  Equipment 
3.2.2  Government  Furnished  Facilities,  Equipment,  Software,  and  Services 
3.2.3  Personnel 
3.2.4  Other  Resources 

3.3 Schedule 
4.0 General  Requirements 

4.1  Objective of the Software  Quality  Program 
4.2  Responsibility  for the Software Q u a l i  Program 
4.3  Documentation  for the Software  Quality  Program 
4.4  Software  Quality  Program  Planning 
4.5  Software  Quality  Program  Implementation 
4.6  Software  Quality  Evaluations 
4.7  Software  Quality  Records 

4.7.1 Software  Quality  Evaluation  Records 
4.7.2  Other  Software  Quality  Records 

4.8  Software  Corrective  Action 
4.9 Certification 
4.10  Management  Review  of the Software  Quality  Program 
4.1 1 Access  for  Contracting  Agency  Review 

5.1  Evaluation  of  Software 
5.2  Evaluation  of  Software  Documentation 

5.0 Detailed  Requirements 

5.2.1 Evaluation  of  Software  Plans 
5.2.2  Evaluation  of  Other  Software  Documentation 

5.3  Evaluation  of the  Processes Used in Software  Development 
5.3.1  Evaluation  of  Software  Management 
5.3.2  Evaluation of Software  Engineering 
5.3.3  Evaluation  of  Software  Qualification 
5.3.4 Evaluation  of  Software  Configuration  Management 
5.3.5  Evaluation  of  the  Software  Corrective  Actions 
5.3.6 Evaluation of Documentation  and  Media  Distribution 
5.3.7  Evaluation  of  Storage,  Handling,  and  Delivery 
5.3.8  Evaluation  of  Other  Processes  Used in Software  Development 

5.4  Evaluation  of  the  Software  Development  Library 
5.5 Evaluation  of  Nondevelopmental  Software 
5.6 Evaluation  of  Nondeliverable  Software 
5.7  Evaluation  of  Deliverable  Elements  of  the  Software  Engineering  and  Test  Environn 
5.8  Evaluation  of  Subcontractor  Management 
5.9 Evaluations  Associated With Acceptance  Inspection and Preparation  for  Delivery 
5.10  Participation  in  Formal  Reviews  and  Audits 

6.1  Acronyms 
6.2  Glossary 

6.0 Notes 

lents 

Version 1 Hughes STX Proprietary 



Acronvrns 
J 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



HSTX Software Engineering Guidebock List of Acronyms A- 1 

ACA 

ACP 

ANSI 

AOP 

ARO 

ATRR 

BOE 

CASE 

cc 
CCB 

CDR 

CDRL 

CFD 

CFP 

CI 

CM 

CMCS 

cmi 

COCOMO 

COTR 

COTS 

CPU 

csc 
csu 
CTR 

CW 

DBMS 

Software  Engineering  Guidebook 

List of Acronyms 

After Contract Award 

Age  of Closed Problems 

American National Standards  Institute 

Age  of Open Problems 

After Receipt of Order 

Acceptance Test  Readiness Review 

Basis of Estimate 

Computer-Aided Software Engineering 

Configuration Control 

Configuration Control Board 

Critical Design Review 

Control Data  Requirements List 

Customer  Found Defects 

Cost to Fix Post-lease Problems 

Configuration Item 

Configuration Management 

Configuration Management and Control System 

continuous  measurable improvement 

Constructive Cost Model 

Contracting Officer’s Technical Representative 

Commercial Off-The-Shelf 

Central Processing Unit 

Computer Software Component 

Computer Software Unit 

Contractor  Task Report 

Code Walkthrough 

Data Base  Management  System 

Version 1 HSTX Proprietary 



A-2 List of Acronyms HSTX Software Engineering Guidebook 

DFD 

DID 

DoD 

DPC 

DR 

DTBrE 

ECB 

ECR 

EEA 

ERD 

EST 

FCA 

FQR 

FR 

FSM 

G&A 

GFE 

G/Q/M 

GSFC 

HITC 

HMI 

HOL 

HSTX 

IADS 

ICD 

IDD 

IEEE 

1 /0  

IPF 

IRS 

Data Flow  Diagram 

Data Item  Description 

Department of Defense 

Documentation Page Count 

Discrepancy  Report 

Development, Test, and Evaluation 

Engineering  Control  Board 

Engineering  Change Request 

Effect Estimation Accuracy 

Entity-Relationship Diagram 

Eastern  Standard Time 

Functional Configuration  Audit 

Formal Qualification Review 

Failure Rate 

Finite State Machine 

General and Administrative 

Government Furnished Equipment 

Goal/Questions/Metric 

Goddard Space Flight Center 

Hughes Information  Technology  Corporation 

Human Machine Interface 

High Order Language 

Hughes STX Corporation 

Iceland Air Defense System 

Interface Control  Document 

Interface Design  Document 

Institute of Electronics and Electrical  Engineering 

Input/Output 

In-Process Faults 

Interface Requirements Specification 

Version 1 HSTX Proprietary 



HSTX Software Engineering Guidebook List of Acronyms A-3 

IT0 

ITP 

ITRR 

KAELOC 

NASA 

NOP 

ODC 

OOA 

OOD 

ORR 

PDL 

PDR 

PCA 

PR/CR 

RE 

RRL 

REVIC 

RCS 

RFP 

SCCB 

SCCS 

SCM 

SCMP 

SCR 

SDF 

SDP 

SDL 

SEA 

SEI 

SEL 

Independent  Test Organization/Team 

Integration Test Plan 

Integration Test  Readiness Review 

Thousand Assembly Equivalent Lines of Code 

National Aeronautics and  Space Administration 

New Open Problems 

Other Direct Cost 

Object-Oriented Analysis 

Object-Oriented Design 

Operational Readiness Review 

Program Design Language 

Preliminary Design Review 

Physical Configuration Audit 

Problem Report/Change  Request 

Risk Exposure 

Risk Reduction Leverage 

Revised Intermediate  Constructive  Cost Model 

Revision Control System 

Request for Proposal 

Software Configuration Control Board 

Source Code Control System 

Software Configuration Management 

Software Configuration Management Plan 

Software Change  Request 

Software Development File 

Software Development Plan 

Software Development Library 

Schedule  Estimation Accuracy 

Software Engineering Institute 

Software Engineering Laboratory 

Version 1 HSTX Proprietary 



A-4 List of Acronyms HSTX Software Engineering Guidebook 

SEPG  Software  Engineering  Process  Group 

SLOC Source Lines of Code 

SMG Software  Metrics Group 

SMR Software  Modification Request 

sow Statement of  Work 

SP Software  Productivity 

SPMP Software  Project  Management  Plan 

SPS Software Product Specification 

SQA 

SRR 

SRS 

SSR 

SrD 

STD 

STP 

STR 

SwEI 

TDCE 

TOP 

TPD 

TRJ3 

TFm 

UDF 

uo 
V&V 

VDD 

WBS 

WCP 

Software  Quality Assurance 

Software Requirements Review 

Software Requirements Specifications 

Software  Specification Review 

State Transition Diagram 

Software Test Description 

Software Test Plan 

Software Test Report 

Software  Excellence  Initiative 

Total  Defect Containment Effectiveness 

Total  Open  Problems 

To  Be  Done 

Total  Released  Defects 

Test Readiness Review 

Unit Development  File/Folder 

Unsatisfactory Outcome 

Verification and Validation 

Version  Description  Document 

Work Breakdown Structure 

Work Control  Plan 

Version 1 HSTX Proprietary 



Glossarv 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software  Engineering  Guidebook GLOSSARY G-1 

Activity. A particular task (e.g., writing the software requirements, designing the software, 
reviewing the test results). 

Baseline. A work product that has been formally reviewed and agreed upon, which then 
serves as  the basis for further development, and  that can be changed only through formal 
change control procedures. 

Builds. A logical  collection of software representing a predefined version of the system that 
contains part  or all of the functionality of the entire system. 

Commercial  Off-the-shelf  (COTS). A hardware  or  software item that is commercially 
available. 

Configuration Audit. The process of verifymg that  the  current version of the Configuration 
Item (CI) agrees with  the current version of the corresponding technical documentation, that 
the technical documentation accurately describes the CI, and that all Software Modification 
Requests (SMRs) have been resolved. 

Configuration  Baseline. A specification or product  that has been formally defined, 
documented, reviewed, and agreed upon  at a  specific time during the CI  lifecycle. The 
baseline thereafter serves as the basis for further  development and can be changed only 
through formal change control procedures. There are three formally designated configuration 
baselines in the lifecycle of a CI,  namely, the functional, allocated, and product baselines. 

Configuration Control. The systematic proposal, justification, evaluation, coordination, and 
approval (or disapproval) of proposed changes and  the implementation of all approved 
changes into  the configuration of a CI after its configuration baseline(s) have been established. 

Configuration  Control Board (CCB). A group  that  determines  the type of problem 
(Engineering Change Request [ECR] or Program Trouble Report [PTR]) and  the priority for 
resolving the problem (sometimes known as  an Engineering Control Board  [ECB]). 

Configuration Identification. The process of selecting CIS, determining the type of 
configuration documentation for each CI, and issuing numbers (and other identifiers) to each 
CI and its associated documentation. 

Configuration  Management (CM). The function of selecting project baseline items, 
controlling the  items and changes to  them, and recording and reporting status  and change 
activity for these items. Changes to these baseline items  are controlled systematically using a 
defined change control process [Paulk et al., Capability Maturity Model for Software, Version 1.1, 
19931. 

Configuration Status  Accounting. The recording and reporting of the information needed to 
manage CIS  effectively, including a listing of the identified CIS and  the  status of proposed 
changes to those CIS. 

Defects. Problems that  are discovered after the review of the software development phase in 
which they were introduced. 

Documentation  Page  Count DPC).  The number of pages contained in a single copy of each 
of the  documents  produced. Page counts are to be gathered per document. 

Effort. Reporting of effort should be in labor hours so the  data  are easily transportable from 
project to project. 

Version 1 Hughes STX Proprietary 



G-2 GLOSSARY Software Engineering Guidebook 

Engineering  Change Request (ECR). a) A requested  engineering  change  and  the 
documentation in which  the  change  is  described,  justified, and submitted to  the  Government 
for  approval  (or disapproval). ECRs are  required  by the Government  for  postdelivery  changes 
to  contract  deliverables.  b) A requested  change  that  requires  a  change in requirements  as  well 
as  a  change  in  software. 

Engineering Release. An  action  whereby  a  CI is  officially made available for its intended  use. 

Error Density. The  count of errors or defects  recorded, as a  function of time,  from  the  design 
phase  through  contract  completion  per 1,000 Source  Lines of Code (SLOCs).  It is expressed as 
a  ratio of number of known unresolved  errors  over the total SLOCs,  expected  or  actual, at 
completion  times 1,000. 

Error Rate. The  number of errors discovered  each  month. 

Errors. Problems  that are created  and  discovered within the same  software  development 
phase. 

Evaluation. The  process of determining  whether an item or  activity  meets  specified  criteria. 

Faults. The  combination of errors and defects. 

Formal Qualification Review (FQR). A  formal  review  used  to  verify  that  the group of 
configured  system  components  that  compose  the  system  complies with the  hardware, 
software, and interface  requirements. This review is often  referred  to as an Operational 
.Readiness  Review (Om). 

Functional Configuration Audit (FCA). A  formal audit used to  verify  that  the  configured 
system's  actual  performance  complies  with its hardware,  software, and interface 
requirements.  The  verification  can  be  demonstrated during the testing and reported during 
the FQR. 

In-Process Metric. Any  metric  that is collected and analyzed during the  course of a  project, 
which  is  then  fed  back  to  improve  the  process,  product,  or  project during the  life of the  project 
[Software Metrics for Process  Improvement-Participant Guide, Motorola  University,  April 19921. 

Phase. A  period of time  defined  by  management at or  prior  to  project  initiation  through 
which the project is expected  to pass (e.g., planning  phase,  requirements  phase,  design  phase). 

Physical Configuration Audit (PCA). A  formal audit of the "as-built"  version of a  configured 
system.  The  configuration  system is compared  against its design documentation to  establish  a 
product  baseline. This is often  a  Quality  Assurance  (QA)  activity. 

Program Trouble Report (PTR). The  documentation of a  software  problem that may  require  a 
change in the software, but not in the requirements. This documentation  also  called  the 
Software  Change  Request (SCR),  Discrepancy  Report  (DR),  or  Problem  Report/Change 
Request  (PR/CR). 

Quality Assurance (QA). a) The  function of reviewing and auditing software  products and 
activities  to ensure that  they  comply with applicable  processes,  guidelines, and procedures 
and  providing  the staff and managers  with  the  results of the reviews  or audits. (Adapted  from 
the CMM.) b) A set of planned  activities  executed independently to ensure that  the  project 
team is developing  software as described in its planning documents (e.g.,  Software 
Development  Plan [SDP], Software  Project  Management  Plan [SPMP], and Software 
Configuration  Management  Plan  [SCMPI). 

Version 1 Hughes STX Proprietary 



Soflware Engineering Guidebook GLOSSARY G-3 

Requirement. A condition or capability that must  be met or possessed by  a system or system 
component to satisfy a contract, standard, specification, or other formally imposed document. 

Reviews: 

Inspection. A formal meeting of several people to discuss the readiness of a software 
module for integration with other software modules as determined by preparatory source 
code analysis. Design or code inspections are  the process of reviewing the detailed design 
or code produced with project personnel and peers. 

Walkthrough. An informal meeting between the programmer and at least one other 
appropriately knowledgeable person. 

Software Configuration  Control  Board. A board composed of technical and administrative 
representatives who recommend approval (or disapproval) of proposed software changes to  a 
CI's current approved configuration. The board also recommends approval (or disapproval) 
of waivers and deviations from a CI's current approved configuration. 

Software  Configuration Item. A unit of software identified for configuration control and 
treated as a single entity in the change control process. Software is typically identified 
hierarchically starting at the  top (executable program level), with logical subgroups  and 
modules at  the bottom. These levels are sometimes referred to as the Computer System 
Configuration Item (CSCI), Computer System Component (CSC) and Computer System Unit 
(CSU),  respectively. 

Software Configuration  Management. A discipline applying technical and administrative 
direction and monitoring to identify and  document  the functional characteristics of  CIS, 
control changes to those characteristics,  record and report change processing and 
implementation status, and verify correlation of CI documentation to actual CI configuration. 

Software  Development File (SDF). A file that contains the applicable requirements, design, 
code, and unit test information for  a single software module. 

Software  Lifecycle  Process Model. A model depicting  the phases through which a software 
system progresses, beginning when the product is conceived and  ending when the product  is 
retired. The model shows  the relationships between the primary activities, baselines, 
deliverables, reviews, and milestones throughout the life of the system. 

Software  Metric. A unit  that enables us to quantitatively determine  the extent to which a 
software process, product, or project  possesses  a certain attribute [Software Metrics for Process 
Improvement-Participant Guide, Motorola  University, April 19921. 

Software  Modification  Request  (SMR). Documentation of a problem with (or proposed 
enhancement to) software CIS.  The S M R  is used to track problem/enhancement analysis, 
problem correction/enhancement implementation, testing, baseline integration, and 
validation. The S M R  is  the vehicle for software CI change authorization. (The S M R  is 
synonymous  with a PTR or SCR.) 

Software  Module. The same  as a software unit (also referred to as a  CSU). 

Software  Problem. A discrepancy between a deliverable product of a phase of software 
development  and  any of the following: the product documentation, the  product of an earlier 
phase, or  the user requirements [Software Metrics  for Process Improvement-Participant Guide, 
Motorola  University, April 19921. 

Software Quality. The ability of a software product to satisfy its specified requirements. 

Version 1 Hughes STX Proprietary 



G-4 GLOSSARY Software Engineering Guidebook 

Software  Subsystem. One  or  more  modules (units) that are logically  or  functionally  related. 
There  may be one  or  more  levels of subsystems in a  system.  In  other words, a  subsystem  may 
contain  other  subsystems  (also  referred  to as a CSC). 

Software  System. Sometimes  described as a  "chunk" of software  that is separately 
contracted  for,  specified,  tested, and delivered. Each software  system has its own 
requirements  specification and system  test  (also referred to as a CSCI). 

Software Unit. The  lowest  level  design  entity  that is implemented in the code  (also  referred 
to as a CSU). 

Source Line of Code  (SLOC). A noncomment,  nonblank  line of written  code  defined as all 
source  lines  excluding  blank  lines and lines  that  contain  only  comments.  The  count  for  metrics 
reporting should be  the  number of  new, modified,  deleted, and total SLOCs. 

Stuffing. The  equivalent  head count each  month  derived  from  the  number of labor  hours. 

Stakeholders. Individuals,  or groups of individuals,  who  have  a  vested  interest in the 
process,  product,  or  project [Software Metrics for Process  Improvement-Participant  Guide, 
Motorola  University,  April 19921. 

Test Step. A  numbered step in a  documented  test  procedure. 

Thousand  Assembly-Equivalent Lines of Code  (KAELOC). A metric  used  to  normalize the 
number of lines of code  between  different  software  languages.  The  source  size is multiplied by 
a  factor  specific to  each  programming  language [Motorola Software Metrics Reference Document, 
April 19911 (see Table 5.41). 

Threads. All software  required  to  execute  a  process  from  system input through system 
response. 

Work  Breakdown Structure (WSS). A  decomposition of the  work into a list of tasks, 
subtasks, and associated  activities.  The  list is organized and numbered in a  hierarchical 
manner. 

Version 1 Hughes STX Proprietary 



Comments and 
Feedback 

Version 1 Software Engineering Guidebook Hughes STX Proprietary 



Software Engineering Guidebook COMMENIS AND FEEDBACK c- 1 

The members of the SEPG would like  to thank you in advance for taking the time  to send us 
comments on the Software Engineering Guidebook. This Guidebook is the first of many steps 
to improve the software development processes used by HSTX to plan, develop and maintain 
software. This is a continuous process of improvement; your comments are the vitally 
important feedback needed to complete the cycle.  Please  bear in mind that both, positive and 
negative comments will be appreciated; we want to ensure  that  we do not undo  what  we  are 
doing right when  we rectify  a  problem. 

Again, we would like  to stress that this is a Guidebook, not a Standard. Its purpose is to serve 
as a guide to help your software development/maintenance process, not dictate how software 
should be developed and/or maintained. There are a multitude of ways to build and 
maintain software. No  one way works best for all or even some projects or individual tasks. 

The following are a reiteration of the goals for the  Guidebook 

To foster an overall understanding, company-wide, of software engineering and  the 
software life  cycle, 

To provide useful software engineering information that is tailorable to individual 
projects/ tasks, 

To provide an integrated approach to software engineering encompassing software 
development/maintenance activities, software support (i.e., quality assurance (QA) and 
configuration management (CM)) activities and software management activities, 

To provide software engineering information (e.g.,  life  cycle models, development 
methodologies, checklists, tailoring guidelines) that  is  both useful and tailorable to every 
HSTX software development/maintenance project or task, 

To provide a single source of software engineering information that  is both concise and 
easy to update  with  new information, 

To foster an engineering perspective and common language with which to discuss, plan, 
implement, manage, review and improve the variety of software and software processes 
used by HSTX employees, 

To serve as a foundation for HSTX software engineering training. 

The following pages provide a  list of issues that will be most useful to the developers of the 
Guidebook; your time in responding to these questions will be greatly appreciated. The 
questions have been divided  into the following categories to help you organize your ideas, i) 
General Comments, ii) Content, and iii) Organization, Format and Presentation; however, you 
may provide  your feedback in any format/organization you find most convenient. Please  feel 
free to address issues that  have not been identified in these questions. 

Again, thank  you for taking the time to comment on the Guidebook. Although all of your 
suggestions may not be included in the next version of the Guidebook, be assured that all 
comments will be considered. Please'remember to provide us your name and related 
information so that  we can respond to your suggestions. Remember to make a copy of the 
following pages before filling them out - this will allow you to reuse these pages for future 
comments. 

Version 1 Hughes STX Proprietary 



Software Engineering Guidebook COMMENTS AND FEEDBACK c-2 

Software  Engineering  Guidebook  Comments and Feedback 

Form  General  Information: 

Name: Date: 

Telephone:  Email: 

Project: 
(Example: NSSDC, SES, etc.) 

Task 

Job Category (circle  one): 

Associate  Programmer  Analyst 
Programmer  Analyst 
Senior  Programmer  Analyst 
Principle  Programmer  Analyst 
Chief  Programmer  Analyst 
Associate  Scientist 
Scientist 
Senior  Scientist 
Principle  Scientist 
Chief  Scientist 
Associate  Technician 
Technician 
Senior  Technician 
Associate  Administrative  Asst. 
Administrative Asst 
Senior  Administrative  Asst. 

Associate  Clerk 
Clerk 
Senior  Clerk 

Associate  Systems  Engineer 
Systems  Engineer 
Senior  Systems  Engineer 
Principle  Systems  Engineer 
Chief  Systems  Engineer 
Associate  Systems  Programmer 
Systems  Programmer 
Senior  Systems  Programmer 
Principle  Systems  Programmer 
Chief  Systems  Programmer 
Associate  Data  Technician 
Data  Technician 
Senior  Data  Technician 
Associate  Secretary 
Secretary 
Senior  Secretary 
Executive  Secretary 
Associate  Publications  Specialist 
Publications  Specialist 
Senior  Publications  Specialist 

Associate  Engineer 
Engineer 
Senior  Engineer 
Principle  Engineer 
Chief  Engineer 
Associate  Technical  Specialist 
Technical  Specialist 
Senior  Technical  Specialist 
Principle Technical  Specialist 

Associate  Administrator 
Administrator 
Senior  Administrator 
Associate  Documentation  Asst. 
Documentation  Assistant 
Senior  Documentation  Asst. 

Primary Function and Duties (circle all that apply): 

Software engineerldeveloper Task Member 
Software Support (circle all that apply): Technical Supervisor (Task Leader) 

Configuration Management Section manager 
Quality Assurance Department Manager 

Software Manager Program Manager 
Other: Other: 

Version 1 Hughes STX Proprietary 



c-3 COMMENIS AND FEEDBACK Software Engineering Guidebook 

General  Comments: 

1. Did you find the Guidebook useful ... (Complete all that apply) 

a) ... as a Software developer/maintainer? (Yes/No): 

b) ... as a Software project manager? (Yes/No): 

c) ... as Software support staff  (CM, QA)? (Yes/No): 

3. How  would  (did) you use the Guidebook? 

a) In which software life  cycle phases would (did) you use the Guidebook? 

b) What information would (did) you use from the Guidebook? 

Hughes STX Proprietary Version 1 



Software Engineering Guidebook COMMENIS AND FEEDBACK c-4 

4. Please rate the Guidebook as  an on-the-job  reference? 

1 2 
. .. L^ 

(not Good) 

3 4 5 

(Good) 

'5. What did you like about  the Guidebook? 

6. What did you dislike about  the Guidebook? 

Content: 

1. Does it clearly explain the functions and inter-relationships of development/maintenance, software 
support (QA, CM) and software management functions? Id not, what  is missing? 

2. What sections did you find most helpful? 

3. What sections did you find least helpful? 

4. List sections with too much detail? 

Version 1 Hughes STX Proprietary 



c-5 COMMENTS AND FEEDBACK Software Engineering Guidebook 
. .  

5. List  sections with too liffle detail? 

6. What additional information would you like the Guidebook to  cover? 1 Y . .  .- 

... . _ I  . ,, 

Organization,  Format,  and  Presentation: 

1. Is the material organized in a logical, intuitive, and useful manner? If not, what changes would 
improve it? 

2. What about the organization, format or presentation of the material enhanced its usefulness? 

3. What about the organization, format or presentation of the material detracted from its usefulness? 

Hughes STX Proprietary Version 1 



Software Engineering Guidebook COMMENTS AND FEEDBACK C-6 

Additional Comments: 

And, finally, in which area(s) would you like to help us improve  the Guidebook? 

Please send your comments to: 

Pradip Sitaram 
Hughes STX 
Commerce I, Suite 400 
Greenbelt, MD 20770 
Tel# (301)441-4184 
email:  sitaram@selsvr.stx.com 

or 

Temp Johnson 
Hughes STX 
Commerce I, Suite 400 
Greenbelt, MD 20770 
Tel# (301)441-4171 
email:  tjohnson@ccmail.stx.com 

Version 1 Hughes STX Proprietary 

mailto:sitaram@selsvr.stx.com
mailto:tjohnson@ccmail.stx.com

	1.1 Purpose
	1.2 Intended Audience
	1.3 How This Guidebook Can Help You
	1.4 Tailoring This Guidebook

	2 Introduction to Software Engineering
	2.1 Definitions
	2.2 Introduction
	2.3 The Propagation of Errors
	2.4 Documentation
	2.5 Reusability
	2.6 Cited References

	4 Software Development Activities
	4.2 Preliminary Design Phase 4.

	5.1 Software Project Management Planning 5.
	5.3 Software Cost Estimation 5.
	5.5 Scheduling and Tracking 5.

	6 Software Support Activities
	6.2 Software Quality Assurance 6.

	Acronyms
	Glossary
	1.1 Purpose
	1.2 Intended Audience
	1.3 How This Guidebook Can Help You
	1.4 Tailoring This Guidebook
	Definition
	Introduction
	Propagation of Errors
	Documentation
	Reusability
	Cited References
	3.1 Introduction
	3.2 Waterfall Model
	3.2.1 Lifecycle Phases of the Waterfall Model

	3.3 Spiral Model
	3.4 Incremental Development Model
	3.5 Prototyping and Prototyping Models
	3.5.1 Planning for Prototype Development
	3.5.2 The Throwaway Prototype
	3.5.3 Evolutionary Prototyping Model
	3.5.4 Throwaway Prototyping vs Evolutionary Prototyping
	3.5.5 Types of Prototypes

	3.6 Selecting a Model
	3.7 Cited References
	Reviews 4.
	Summary 4.
	Tailoring to a Small Project 4.
	Suggested Reference Material 4.
	Appendixes 4.
	4.2.8.1 Checklists 4.



	6.1 Software Configuration Management
	6.2 Software Quality Assurance


