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Table II.4.1 1

Detector geometries

WA
avg. source size: 1.98 mm x 4.37 mm m_,_m//“/J

wheel face to holder tube end equals 5.556 mm

fractional fractional
lOOmm2 active area assumed relative Geometry absolute Geometr
(.07%) * 1.0000 .08564
lr)()mm2 active arca (1.22%)* 1.5071
75mm2active area (11.7%)% 1.0766

average source size 4 times above value gives

2

GlOOmm 7.346%

if source were maximum beam burn dimensions (2.78 x 6.75 mm)
= %
GlOOmm2 8.326

A = 2.8% of .08564

Assigned Absolute Errors

100mm? Gt (33G + )
150mm? "o(33g + )
7 5mm2 no(12%G + )

errors from detector placement in counting mounts, and
difficulty of measuring detector face recession due to

casing design.

+ errors from active areas uncertainties.



Appendix 2 gives a complete explanation of the spread source
geometry calculation. For the calculation it is assuméd

that the source is uniformly and symmetrically distributed

about a line from the detector center to the source center.

Table II.4.1 gives the counting geometries. The catcher foil
source to detector distance varied because of the differences
in the depth of recession of the detector faces into their
permanent mountings. From table II.4.1 it should be noted

that the source size has only a marginal effect on the geo-
metry, so that the exact recoil distribﬁtion size on the catcher

is not critical,
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The denominator can be transformed into a form suitable for binomial ex~

pansion in powers of T
3/2 3/2
[:zZ + r2—+ ot - 2pr cos d):l" = F3 [l +i—(—%@J (5)

Integration of the individual double integrals leads to an infinite series for
Gp. The form of the series is determined by the choice of F. F = z is one
poss:LbIe choice,3 but this leads to a particularly clumsy form, in which a
and p are not readily separable. While tuis result can be used for calcu-
lating Gp, it is difficult to integrate it further e.g., in the case of a spread
source of known uniformity.

The choice of F = |/ 2% + r? leads to a simpler expansion which is
suitable for further integration when a spread source is considered. The
sum of mtegrals may be evaluated by first integrating with re 5pect to

2T K ) /v ri dr
(1)( .cos® ¢ d¢>_ and then evaluating integrals of the form .
{ (z2 + rz)m/?"
While the calculations are quite tedious, the results are straightforward,
giving ! v
1 3 z aZZ 15" 4 a z 2 3 z
A == |1 - 2 22 -2
v > P =3 [ @:l gL stz o2 )
_35 62z 4 5 ?‘2+—5-a4~)+.... (6)

64 D3 8

Equation (6) reduces to (3) when P is on the axis (o = 0).

o<

Essentially the same method has been used by Blachman,4 who cal-
culated the geometry of a spread source (see Equation (27)). It can be shown
that the same method gives, for a point source, a formula which is of differ-

ent form, t equivalent (i.e., directly transformable) to Equation (6):

1 1 i o l_l [ 3/48 _&Z 15/16 B _ 105/64 p?
P 2 Vg 2P0 TR T U T )
b [35/32 B - 315/64 82 1155/256 [33]+ :”l

(L) " (e )72 T (1 )

4
Nelson Blachman, private communication to B. J. Burtt (NuCleOHlCS 5,
28-43 (August, 1949), Appendix C).




©mat i

1 z 3 2y 15 a’z 105 a*z
==|1-2 --pzi—-+p4 5= - — (7)
2 D 8 D3 32 D 128 p

_ 6| 35 2%z 315 atz , 1155 a‘s
" P |6z D7 "128 pit t 512 pis

The mode of calculation used for (6) and (7) has the disadvantage
that there is no evident method for writing down the general term, hence
requiring increasingly complex integrations and tedious algebraic manip-
ulations as more terms are required. Another method of derivation can be
used, which reduces the calculation difficulties by enabling the development
of the general term. ' : :

When a funct-ion is symmetrical around an axis and its value is known
on the axis, i.e., G(z,0) = f (z) forp=0, G may be formally expanded in the
form ' ' :

G(z.p) = £(2) + 0 £,(2) + @ £ (2) + -...

where f,pn (z) are as yet unspecified functions. Utilizing the fact that the
solid angle obeys Laplace’s equation, i.e., V2G = 0, a recursion formula can
be determined: :

_ 1 n 1 1 1 1 1 _en
’ fzn (Z) == (_Z—n—)z— fzn—z(z) = ("1) (Zn)?‘ (Zn—Z)Z cie '6—2— Zz— Ez- .f( )(Z)
where
_f!n_..;_(z) = ’c‘id“‘; [fzn—-z(z):l and £<2n>(z) = ddz?; £(z)

Thend

| o
#V(z) - L V1) +

.Qi " .ot
G(z,p) = f(z) - 52 £ (z)+ >2. 2. 4.2

4_2

= £(z) zzf()+24(2!)z flﬁf() + (1) zm(n!)zf (z) +.. (8)

Taking £(z) from (3) and calculating successive derivatives, one gets
equation (6). However, this method also involves extensive algebraic manip-
ulation for higher terms. A general term was derived to simplify the calcu-
lation and, it was hoped, to make possible the determination of the region of

>This is a method to be found in treatments of Laplace’s equation, e.g.,
H. Bateman, Partial Differential Equations of Mathematical Physics
(Dover Publications, 1944), p. 406.

I i ey e -



convergence. The derivation may be found in Appendix A; the results are:

~
n_z2n : ' :
(=1)7*" £(2n)(5) - ' (9)
ZZn(n!)Z . .
(c1ympen (2nr 1) z ) | (an-1)
240 (n!)? (z2+a.2')?‘n+72 (2n-1)! 2n+1)
2, .2y (. zyn~1 . / (4n-3)! .
* (f‘ +20) (=) (zn-2)! (zn-1)! |
-1/2! (a2+.z;2)2 (zzjn-.z _(4n-5)!
, 0 T [(2n=3) (2n-3)!
- -
- 4n-7)!
+ 1/3! (a% + z2)3 (22)273 (
. / ( P (=) (2n-4)! (2n-5)!]
F oeeee
~1 .2 2yn_(2n)!
o (a% + z?) 2 )
LN - for n even
+ for n odd
» The coefficients in (8) have been evaluated to the terms in p!? giving
equation (10), which is evidently the same as (6):
Go =L [1__2_] _3 22z 15 42?_5(22_2 2) (10)
P=7 D] "8F s T32F o g ® :
35 4a°
-2 6%_1% (24 _g Zzaz_!__g_ a?)
315 ga’z o 21 42,35 24 35 4
tE1z P i (20 - Zat 4 g 2t - o2al)
693 102°z g 6.2, 63 44 105 ;4 63 4
1024,0 D21(z 9za+4za 16za +128a)
3003 122'z w0 55 52, 165 ¢4 1155 4, ¢ 1155 , 5 231
Y3096 P opE 2t et h g ehat - dhaf S et - 0al)
+"o.a-
™

We have not been successful in determining the region of convergence
analytically, but numerical calculation indicates that convergence occurs for

z and a. r \

[ p— PSR ———




The evaluation of Gp” (3) as the first term in (10) is simple, except
Lo where g is large, in which case Gp” appears as a small difference of large
numbers. GP” can be expanded by the binomial theorem in powers of (1n
(14b), set L = z, Pp = 1) and can be adequately calculated with the use of
only a few terms, since the series converges rapidly in the region where it
is needed at all.” Alternatively [1 - %] may be transformedb into a form

eliminating the-difference of two large numbers.

(11)

Zumwalt? has used another me of integration leading to an ex= v
pansion in other variables, although similar in form. Integration of (4) with
respect to r leads to (see Figure 1):

1

1 (l+1e% cosd))dqb
CP =7 " In

g
T ] T

2

The two terms in the integrand denominator are expanded in separate
binomial series‘in p/j, the two series multiplied out, and each resulting
term then is integrated with respect to ¢. The resulting series is:

' 1 2 Lz{1 /% 1 [ 5 z) |
=53\l - =575 7] = > 12
. P 2{ szraz} ng(ﬂ) E (”2", : (12)
oV 1 9 , 63 |
(@) = ey
. | |
Sef L (1 12y 13 4290
+16<,2) X13(1+2y+ 3 y+'16y :
gg_(é)s 1 <’ 17 , 255 , 1105 , 12155 8) »
Ti28\L) Mtz Yt Y tTg Yt V)Y

where y :%and)& = Vi +_y2

Since 1% = ,o2 + z%, (12) is not easily integrated over p when the sample is
distributed and hence is less useful in this case than (10). Convergence pre-.
sumably obtains for conditions under which the bin ial expansions hold,

'.e.,%( 1. Since this is always true, (12) should converge in Tegions where
(1 not

6We wish to thank Herman P. Robinson for informing us of this trans-
N formation.

7Lloyd R. Zumwalt, “Absolute beta-counting using end-window GM
counters and experimental data on beta-particle scatiering effects,”
Appendix B, Qak Ridge National Laboratory Report Mon C-397
(Sept., 1949).




The fact that Gp satisfies Laplace’s equation has led8 to another kind
of expansion in the Legendre polynomials, Py (cos 8). Since GP is axially
symmetric, the general solution is:

1 x Bn
Gp =5 > [Anxn+£n+l:l Py (x)

It is possible to evaluate Ay and B, by noting that on the axis: L=2z,cos6=1
and P, (1) = 1, and the form of Gp is known explicitly (Gp’ in (3)). Binomial
expansionsof Gp” in powers of % and in powers of E give the values of both

sets of coefficients.

2

For'o’

a

<1,

1
AO:1;A1=—;;A7_n=0(n21);BnEO

. (13a)
e )n-hl 1.3 «ee 2n=1 (L) zn+1 P ‘
A2n+1 izn"l’l P2n+1 B 2.,4 cao 21’1 a »Z>n+1
For% <1, o
Ban=0(@m20); Ap=0
(13b)

P +1 1.3 ¢+« 2n-1/a\2%2
B zn=1 _ (1) . (._. P,
2n-1 ﬂz_—-n (-1) 4 on \T 2n-1

The coefficients are explicitly calculated to terms in P;;(cos 6) in
(14). With £ - w, 2=y, P, = P (cos 6),

L
For o <1, .

1 - ow?
sz-z—[l —wP1+-‘g—P3-§w5P5+3 w'P

231 13 429 15 6435 17
Toza V¥ F13% 3528 W P15 = 35755 W Furt o

a
For — (1,
A

1L, 3 5 % 35 63 10 _ 231 4

429 4 6435 12155 ] (14b)
t 028 Y T3 " 3768 ¥ Fistgsgsg Y Farto

——

For example, see Sir James Jeans, Mathematical Theory of Electricity -
and Magnetism (Cambridgel University Press, 1948), fifth edition, p. 431.
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values of the polynomial parts of each term (Pp) are listed i tables.9,10,11
On the other hand, integration with respect to p is not simpic, since it is con-
tained in both Pp and the expansién variable in an inconvenien: form. The
series (14a) and (14b) are complementary in that one converges within the

sphere £ = a and the other outside of it. enerally truc ngg

vergence boundari ies, convergence of either series is g
for values of fclose to a. For thiS region the use of (10) or (12

) 1s preferable.

In contrast to (10) and (12), the use of (14) has the advaniace that the

III. GEOMETRY OF POINT SOURCE OFF THE AXIS -
NUMERICAL METHODS.

Other methods have been developed which require numerical integra-
tions. In general, these are less convenient than the series described in

Section 1I but are included here for completeness.

If (4) is integrated first with respect to ¢, using the de Haan integral
table,12

G z a om rdrdo
P =4 / / [2% + r? + pz@pr cos q5]3/?‘
o 0

:_z_/a rEf(p)dr =_Z__/a rp E” (p) dr
m Vz2 + (r + p)? [z?‘ + (r-p)%] 2'7_T0 \,/E; (2% + (r - p)?]

(15)

4pr . > _
e = LY G R

9H Tallgvist, “Six-place Tables of the Legendre Functions. Part 1.
n (x) at 0.001 intervals for n = 1 to 16; Part IL. Py (cos 6) at 107
mtervals for n = 1 to 32,” Acta Soc. Sci. Fennicae (No\za Series A)
2, No. 4 (1937); 2, No. 11 (1938).

100ther tables listed in A. Fletcher, J. C. P. Miller, and L, Rosenhead,
Index of Mathematical Tables (McGraw=Hill, 1946).

111f tables are not available, the explicit form of the polynomials is
available in mathematics texts and compendia which contain treat-
ments of spherical harmonics. E.g., Jahnke and ¥. Emde, Tables
of Functions with Formulae and Curves (Dover Publications, 1945);
E. Madelung, Mathematischen Hilf smittel der Physikers (Dover
Publications, 1943).

12D Bierens de Haan (translated by J. F. Ritt) Nouvelles Tables
D’Integrales Definies (G. E. Stechert and Co., 1939) Table 68,
Equation 26.
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L is the complete elliptic integral of the second kind. Since values of E“(p)
\ are available from tables,10 (15) may be evaluated by numerical integra-
tion. The relationship is valid for all values of a, p, z.

Another kind of numerical method has been independently reported
in two papers.13,14 Consider the cone formed by joining the point P (Fig-
ure 1) with the boundary of aperture A. The cone intersects the unit sphere
with center at P in a space curve whose equation may.be.determined by
solving the simultaneous equations of cone and sphere. The area on the
unit sphere cut off by the cone (i.e., the desired soligwgmp e) may be deter-
mined by ing over the sphere, with integration limits set by the
equation of the space curve. According to Berne,13

1 n®) . 4r dp 1 2 —
il N -
2 2

where r =1 () is determined by solving for r in the relationship:

2 2 _
sin¢ = - - + 2 L l-r
\ _ ‘ 2p 1 - r? 2pz r

- Gp may be evaluated by numerical integration.

According to Healy, et gl.,l‘} using a sphere of radius t (rather than
the unit sphere), . '

. \/t?‘---x2
Gp 1 /’€ / t dy dx
= 2 z_.2_ 2"
A 5 a(x) th-x" -y
T )
1 f Ll aix ' :
= — - - i d
At l: > ~arc sin 2 b (17)

p-t

px‘.t\/pzxz—K’K:tz(pz_az_z?.)’ c - t

K/tz 1 +(-—‘71~sz

Where

OL(X) =

13E. Berne, Rev. Sci. Instr. 22, 509-12 (1951).

7 143w, Healy, L. C. Schwendiman, and R. C. Thorburn, “Counter Cali-
v ! brations in the Health Instrument Methods Group,” Hanford Works
Report HW-18258 (July, 1950).




Here too, Gp may be evaluated by numerical integration. Both re-
ferences have tables and graphs calculated for arange of values of z, a, p.
¢ (Since only the ratios enter, only two parameters are involved.)

A formula whose evaluation involves the numerical integration of
only a correction term has been derived by Henrich.15 Considering the
origin to lie vertically above the point P (Figure 2), from (4), for a >p

a-p a+p arc cos p
_rdpdr. rdqbdr‘or
. (22 + )7 = (2 + r2)3/2
| (18)
a+p

-1 1 - z + = arc cos r2+p2-a2 rdr
2 W(a-p)* +2° | 2m 2pr (2% + x?)¥/2

The integral may be evaluated by numerical integration. The magnitude of
the integral relative to the first term depends upon the difference (a -p).
When the difference is small, the integral is the larger component; for o

R relatively small, the integral need not be calculated very accurately, since
it is then only a correction term.

1IV. SOME APPROXIMATE FORMULAE FOR THE GEOMETRY
OF AN OFF ~AXIS POINT SOURCE

Since the difference between Gp and Gp” is approximately second
order in p, the geometry of an off-axis point may often be sufficiently
approximated by Gp” (3) for small displacement. It is sometimes of interest
to know how much error may be introduced by shift of the source from the
axis. It is useful, theiefore,to have a simple relationship Wthh gives the
percentage deviation of Gp from Gp~.

" Robinsonl!® has used an approximate method suitable for small > 2
and p. The geometry of a point off the axis (Gp) is less than that of a pomt
on the axis (Gp ) primarily because of two factors: (1) increased average

151.,. R. Henrich, Appendix IV in Isotopic Carbon by Calvin, Heidelberger,
Reid, Tolbert, and Yankwich (Wiley, 1949).

16Herman P. Robinson, University of California Radiation Laboratory,
Berkeley, California, private communication.

B S TR TN, LR LT T S Loy o




Figure 2

SOURCE-APERTURE DIAGRAM
FOR HENRICH NUMERICAL METHOD

13
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source-aperture distance (which enters in as the inverse square), and (2)
smaller effective aperture area, entering in as cos 6 or z/ﬁ (Figure 1),
Thus approximately,

: 2 3
Gp = Gp~ (%) (%) = GP’% = Gp’ (1 . p2)3 2 (19)

where Gp’ is defined in (3) and (11).

Using (11) and the first two terms of (10), approximately, for small g,

e 3. 2 z.(z+D)“

Using a binomial expansjon, either (1 9) or (20) leads to a more
approximate relationship, for small &,

. 3P
Gp =Gp ( "3 z> | | (21)
. i . .

zZ

It is interesting to consider the effect of variations of p or zon
Gp/Gp The term in p (20) has a maximum value with respect to z at
z-af\/7+ V17 = 0.8338a..

It is ev1dent from this that the geometry is most sensitive to displace-
ments of the source from the axis when z is approximately equal to the
aperture radius. For evaluation of the effect of variation of z on Gp, it is
sufficient to calculate it for Gp’. From the relation

dGp” D+ =z
Gp~’ D?

dz

it is evident that the peréentage change in Gp” due to a vertical source shift,
dz, increases slowly from z = 0 (change proportional to 51)-.) to a maximum at

z = \/T?— = 0.58a (change proportional to lz'}-) and then decreases with increas-

ing z. The region of greatest sensitivity to shifts in z and p corresponds to
a region of operation commonly used with mica end-wmdow GM tubes.

For-iL small, from (14a), approximately,

oot [1-4£]-4[1-2]
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Near the aperture, the geometry does not vary appreciably with displace-
ment from the axis. From (21), it is evident that the same is true for large

ForE- small, from (14b), approximately,
1 a? 1 a?
Gp = - — 0 = — 3 :
Gp =7 7z cos 1% ©°s e (23)
. 1 a® o
d g
and Gp 3

This relation is equivalent to approximating the area of a small section of a
sphere by the area of its projection on the tangent plane.

The effect of particular percentage errors in the measurement of the
dimensions z and a on the percentage error in the calculation of Gp is
smallest close to the aperture (22) and at a maximum for small % . In the
latter case,

dGp _ , (da _ dz
o R

V. UNIFORMLY SPREAD SOURCE COAXIAL WITH APERTURE -
INFINITE SERIES EXPANSIONS.

If the area of a source is too large to approximate it as a point, an
average value (Gs) of the geometry may be calculated (AS = source area):

LS | | 242)
GS~AS ) Gp dS (24a)

In general, this can be détermined only by numerical integration, using one
of the Gp formulae for evaluating the integrand. If the source is circular,
parallel to and coaxial with'the aperture, and the intensity distribution is
simple, (24a) can be integrated explicitly. The simplest case, one for which
most of the Gp formulae above may be integrated, involves a uniformly
spread source, for which

2
GS = — Gp - 2npdp = — / Gp Pdp (24b)
0






B s s -3

=l TR

[N SN

AT O IR AN e AR e L, T

b b T s e Y

R SO ST

y — PrC. de an
2/ A% -+ 15 @y 3
[;.-,]» s pT S (o)
16
The simplest integration occurs with Gp defined by (10), each term
v zn
in Gg being identical to that in Gp, except that pzn is replaced® by z-i-l . Thus,
1 z 3 .2 alz 5 4 azz 2 . /
GS_Z[l D:l Tz b D5+32b (z a?) + ... (25)

Since (7) is equivalent to (10), it may be integrated in the same way 1o
give Blachman’s equation.4 It is also possible to get the same result by stari-
ing from (4) and (24b); this method suggests!7 anocther type of expansion for Gg.

g - ] H.'/‘/szds_ z /b/a/z”rpdq;drdp
41 (mb?) R 2 S A A R?
AS

- (26)
I' B 2m
1 do dt ds ) A
T 8qr /f./ p3 ‘ . 5
o 0 o0 D j}/
2 2 b2 @ \}\/>
where t:———,s:-—’L,F:———,Bz,f; /;
z* z z* (2% -
' 3 R 3/2
and P :-———:{(l-i—t)-&-(s-\)ts cosqﬁ)]

1 :
Expanding 7 in a binomial series with (1 + t) as the first term and

(s - Vts cos ¢) as the second, the three integrations relative to (¢, s, t)
may be performed as discussed in calculating (6). Terms are then arranged
in ascending powers of [', giving

4

Ge =217 - L 1)3, 8 2|5 B 35 pB° W
272 vl + B j 2 )8 (1+p)E. 16 (1+p)7% 64(1+p)7?
- 2 | (27)
35 B 315 B , 1155 g’ ]
*T 128 (l + B)9/2 "~ 256 (1 + 5)“/2 1024 (1 +p)¥2 J

Presumably (25) and (27) will converge under the same conditions that
(7) and (10) do, i.e. , &-<1, for any (z,a). T is large and Bis not, it is possible
to expand Ggin powers of B, since the roles of t and s in P and (26) are almost

b ’b'c}

< -C f'
- p" pdp =3 = —_
b “

b2 Zn+a n+1

Y]

17Nelson Blachman, private communication.
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symmetrical, i.e., P = [(1 + s) + (t = Vst cos qb)]l/?‘ Then
1p B ! B{ r (282)
Gg=zx={¢{1 - - =
5 zr{ m} 2T ch(1-»1#)—"/2
_ 25 _T 35 T2
B _16 (1+ F)7/2 64 (1 +F)¢/2
gl3s T =y fuss 02T
B 128 (1 +Iw)9/2' 256 “ 2 1024 (1 + )3/ 2
1 a® z 3 a*z 5 abz,, 3 2
or . GS—ZE[I‘Z'I—B-—?+§2—‘*§‘< -Zb)
35 aSZ 4 5 2 5 4 .
2-57) IR (Z -Z—b +—8-b)+ (280)

If a large number of terms are required for the desired accuracy, further

expansion of (27) or (28) becomes quite inconvenient owing to the increasing

complexity of the integrations and subsequent algebraic manipulations.

, The integration of (12) with respect to p is excessively complicated,
‘since p enters into both ) and). No attempt has been made to perform the
integration except for the approximation containing only the first two terms.?

The expansions in Legendre polynomials, (142) and (14b), may be
integrated by substituting £ = cos € in each Legendre polynomial and integra-
ting term by term. Then, for 2 <1

IR
1 a% =z 3 at z3 z
- wam- /'MﬁzEZ'z4“ﬁ"@

5 ab > z* z
+—== F7 (6 - 705+ lS—Z) + \k (29z)
128 L6 | A )

. ?ml N

10X% + 3) + -

LY.

: 1 2 oz 3 2 5 r4
== (l - ‘l—:) +§Y X(-XZ - l) T %4 véx(-?}\

k.-,..v»

Equation (292) is similar to the equation calculated by Kovarik and Adam
except that a & b (they treated the case a = b). It can also readily be shown
that (29a) is equivalent to (28b) and hence to (28a).

L

17
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For small 77, the polynomials in X involve small differences between
large numbers and hence are awkward to calculate. This difficulty may be
eliminated by dividing through by 1 - X2:

1 az 1 3 2 5 4<r »2
o (29b)
§ 35 YéX(33X* - 30X% + 5) - -
1024 _
Similarly, :Eor’!l5 <1,
L T ' )
1 _pz 1 )3 z3 z
Ga = — 2t e (F— -~ 3 2 ) - ...
s =2 f ,Qd)l{ =7t 4 3(5123 37) }
z , J
1. L? Z 2 | " 2
=3 (1 —z)(l —X)——éW X(7X* - 10X° + 3) (30a)
+ %32 WX (33X% - 63%X* + 35%X% - 5) - }
wh —I'Jj lso be writt L
ere bz may a sO e written as 1 - Xz .
‘Again, for small% , divide through by (1 -X?) and
1 z, 1 _ .3 > 3 s . 2
Gg== ! (1 -3 + = W3X(7X* - 3) - — W°X(33X* - 30X* + 5) + ---((30b)
- 2 1 a 8 64

It may be noted that the polynomlals in X in (29a) and (30a) and in (29b) and

(30b), respectively, are identical. The generzal terms for these equations
are described in Appendix B.

The labor of calculating the polynomials in X would be decreased if
it were possible to show relationships between them and the Legendre poly-
nomials, whose values have been tabulated.9:10 Such relationships doc indeed
exist. While it is possible to deduce these directly from (29) and (30), it 1s
simpler to start from (24b) and certain recursion properties of the Legendre
polynomials. The derivaiion is given in Appendix C. The resulis are:

i

o

)-—%YZ (@ —XPZ)+—Y4 (Ps -XP.;)-“-}@M)

18
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' >
With a general term (n 2 2)

N —

.3 +++2n-3 _,n- ' |
(-1)n*1 SV Y2 [Pzn-s(x) - XPzn—z(X):l (31b)

As before, for l):[:-small, the polynomials in (31) are small differences

between large numbers. An alternative form without this awkwardness is
(see Appendix C): '

1 a? 1 1 ,dP, 1 _,dP, 5 e 4P ,
GS-ZP{1+X g * ax 3 ¥ dx 384 © dx+ (32a)

With the general term (n 2.2):

_ynt1 1.3 e 2n-3 1 d .
(-1) 2.4 -+ 2n n-1dx Pzn-2(X) (32,b)

Unfortunately, the precision and detail of the available tablesl8 of

the derivative function are not as extensive as those of the P, tables them-
selves.

For_-—a—<,1,

(33a)
L _

2 z 1 3
Gs = = {(1 - X% (1 -;)+-—5—W3(P3 - XP,) -ESWS(P5 - XPy) + }

‘N"—"

With a general term -

n+1 1.3 +---2n-1 2
(-1) 2.4 ....2n  2n+3 WAL [Ponyy - XPsniz] (33b)

‘and for small-E— , from [C - Zd]

1 Czy 1 g dP, 1 . dP . 5 _.dPy _
“s =32 l -5V "5V s ten Vo (342)
With a general term

1.3 «¢ec 2n~1 1 d
-1)ntl 2n+1 ,
O s @i @y L ax Pene() (34b)

18y, Tallqvist, “Tables of Legendre Functions and Associated Functions,”
Acta Soc. Sci. Fennicae 32, No. 6 (1904); 33, No. 9 (1906).




Owing to the regions of convergence of the forms of Gp used, none of
the equations (29) through (34) may be used for a source which intersects
the sphere L? = z* + p% =

VI. UNIFORMLY SPREAD SOURCES.—NUMERICAL METHODS.

Any of the results for Gp (Sec. II to IV) may be used in a numerical
integration for evaluation of Gg (24a). In fact, for a spread source whose
distribution is not suitably simple (or uniform), this is the only method that
can be used.

Henrich’sl5 method (Sec. IV) may also be applied to a uniformly
spread source. For»% >1,

1 1 z z , ’
Gg==1{1-= + (352)
2 li\/z +(ai-b) Vz*+ (a+b) :l
z atb a? r? +a? - p? b? . r? + b? - a?
+ — f -—arc cos | ———— - — arc sin | ————
b2 2 ! Zar 2 Zbr
a-b

) ) ’ 1 . rdr
¢ | -7 \/4azrz - (r% + a% - b?)? } 2 + o2) ¥ 2

1) a® Z 1 z z
Gszi{? l:l— \[z.?‘+(b*a)zjl+.2‘—[:{zz+(b—a)»z—\/z2+(b+a)2J

z b+a’ rdr .
t— b/‘ { } T | (35b)

Z
-a + r

The integrands in (35a) and (35b) are the same. As in the case of (18), this
method is chiefly of value where the integral is small, so that its numerical
integration need be performed only to modest accuracy.

VII. SOME APPROXIMATE FORMULAE FOR SPREAD SOURCES -
Robinson’s approximate equation (Sec. IV) for Gp may be easily inte-

grated16 in (24b) to give (using (11))

2 - 1
ZGP f pdp _2zGp ) L _ (36)

2
Epre P 1+ 2

20




B

(36 cont’d.)
2Gp” L2 1 1
Gg = 2 = o P
b 2 2 b , a
(1+——)+\/l+}—)— I LA 1+32—+_ 1+ =
z* z? z° : z2 Z z
a2 2
This may be expanded in binomial series 1n 2 5 and :z— . Itis, however, more

convenient to calculate Fg, where

2y 2 2 2 2 ,
.\Fs='———wl—=z~ 1+ 2 +\/l+§—_)(l LA l+b - (37a)
GS aZ ZZ - ZZ ZZ ZZ )
Expanding Fgto the first few terms in the binomial series, -

2
_ (4 2 9b (1 vt 3 b* + a®p?
FS_(4——+3+3——+——~;ZT——) (Z S Y S ' (37b)

a : a a Z Z

For the conditions of validity of (37b), namely small = and b ihe first
term dominates, and the succeeding terms need be ¢alculated with only limited
accuracy. Comparison of (37b) results with accurate values calculate‘d from
(29a) shows the error in the approxunatmn to be <0.1% , for ( <0.15, £ <0.19)
and (2 <0.2, 2 <0.14) and (& <0.5, 2 <0.07). |

" Some of the fofmulae of Sec. IV can be extended, with little modification,
to spread sources. For example, close to the aperture (i.e., % small), from

- (30b) or (34a),

.l z
cs=3|1-2] S | (38)

which is the same as (22). The same result comes from direct integrétion of
(22) in (24b). Similarly from direct integration of (20), or from (25),

Gg=Gp" {1 -—g-b?— [M} - (39)

VIII. SOME TABLES OF Gp VALUES

Some preliminary calculations were made in a program of setting up
tables of Gp and Gg. Although this program was only partially completed,
the resulting tables, incomplete as they are, have some usefulness in the
region covered, and are presented in this section.
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Tables I and II give the results of the calculation of Gp from (14b)
over a range of (:—;, §) values, for'% >l. In order to simplify interpolation,
¢ (l4b) was rewritten so as to make the tabulated portion a slowly varying
function of the parameters. From (14b)

3 5 1 a®
Gp = —— XZPI-Z—yZ x* P3+§y4 %% PS—--]:Zi— Sp = GoSp (40a)

N

In Table I are tabulated values of Sp over a range of z and 2 values. The
: . . a a
second and third columns contain

\¥]

1

Gq = 7 and

1
Gp

NNI Q

- For small g, Sp varies too rapidly for accurate interpolation, and
another method of tabulation was attempted. In this

Gp=t 2P - 2y2p, 4 Byrp - |2 L2 g, 057
P=g7 VY |F1-7V Ps+ g5y Ps- =772 °P = GoSPp (40b)
The results are shown in Table II, With% and g as parameters. It is evident

that the function Sp varies too rapidly for accurate interpolation, although
there is some improvement over Table I.

¢ _ ‘We wish to thank Professor Norman I. Adams of Yale University for
informing us of Jeans’s solid angle calculation. We are grateful to Marion
Greene for having performed much of the calculation of the tables and to
Jerome Lerner, Robert Keyes, and Lawrence Sjoblom for checking the
manuscript and parts of the tables for errors.

APPENDIX A. DETERMINATION OF GENERAL TERM FOR (8).

dn | dMu n\ dni-ly dv n\ d? 7%y d%v 4oy
— (uv :-——v+() - — (-)—————-+--- — (A-1
dzi (av) dz" \ 1 dzRt dz &/ 4z~ gz T dzn )

If we set uv =

ndnf(z) ) d?(uv) ’ )
dzn dzn (A 2)

The
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’ Table I
GEOMETRY VALUES FOR 'E>l. Sp VALUES LISTED, WHERE Gp = GOSP
£/ a
z G 1/G
a o o 0 0.25 | 0.5 [0.75 [ 1.0 | 1.5 | 2.0 | 3.0 | 4.0 | 5.0
100 0.00002500 || 40,000 .9999 | .9999 |.9999 |.9998 | .0998 | .0996 | .9993 9975 | .9962
80 0.00003906 || 25.600 .9999 | .9999 | 19998 | .9998 | -9996 | .9994 | - 9939 6961 | .9041
60 0.00006944 || 14,400 .9938 | . 9998 | 19997 | .9996 | .9994 | . 9989 | . 9081 9932 | 10895
50 0.00010000 || 10,000 | .9997 | .9997 | .6996 | .9994 | .9991 | . 9984 | . 973 19902 | S9349
40 0.00015625 || 6400 || .9995 | .9995 | .9993 |.9990 | .9986 | .9974 | .9958 | .9912 | .9847 | . 9766
35 0.00020408 |/ 4900 [ .9994 | .9993 | .9901 |.9987 | . 9982 | .9966 | .0945 | (9885 | 9801 | 9696
30 0.00027778 || 3600 || .9992 | .9991 | .9988 |.9982| 9975 | 19954 | (9926 | 0844 | 9732 | "aza0
27.5 ||0.00033058 || 3025 | .9990 | .9989 | .9985 |.9979 | .9970 | [5946 | 19912 | (9815 | .9682 | 9515
25 0.0004000 |l 2500 | . 9988 | .9987 | .9982 | .9975| .9964 | .9934 | .9893 | .9777 | .9617 | .c410
23.7510.0004432 || 2256. 3| .9987 | .9985 | .9980 |.9972| .9960 | .9927 | .0882 | .6753 | .0578 | 9360
22.5 |10.0004938 [ 2025 | .9985 | .9983 ['.9978 | .9969 | .0956 | .0919 | 0868 | 972 | 9531 | .a™1
21.25(/0.0005536 || 1806.3| .9983 | .9981 |.9975 | .9965 | .9950 | 9910 | 0853 | . 9693 | .0477 | (9911
2 0.0006250 || 1600 || .9981 | .9979 | .9972 | .9960 | .9944 | .9898 | .9834 | .9655 | .0413 | .9117
19 0.0006927 || 1444 | .9979 | .9977 | .9969 | .9956 | .0938 | .0887 | .9816 | .9619 | . 9354 | . 9030
18 0.0007716 | 1296 .9977 | .9974 | .9965 | .9951 | .9931 | .9874 | .9796 | .9577 | .9284 | .8929
17 0.0008651 || 1156 | .9974 | .9971 |.9961 |.9945 | .99023 | .9859 | .9772 | .9528 | .9204 | 8813
16 0.0009766 | 1024 || .9971|.9967 |.9956 |.9938 | .9913 | .9842 | .9743 | .9470 | .9109 | .8632
15 0.0011111 || 900 .9967 | .9963 | .9950 | .9930 | .9901 | .9820 | .9709 | .9401 | .8998 | .8519
14 0.0012755 || 784 .9962 | .9957 |.9943 | .9920 | .9887 | 19794 | .9667 | . 9318 | .8864 | .8332
13 0.0014793 | 676 -9956 | 19950 | . 9934 | 19907 | .9869 | .9762 | 19616 | .9217 | 8704 | .§100
12 0.0017351 | 576 .9948 | .9942 | .9923 | .9891 | .9847 | .9722 | .9552 | .9093 | .8308 | . 7843
11 0.00 0661 | 484 .9938 | .9931 | .9908 |.9871 | .9818 | .9671 | .9472| .8937 | .8258 | . 7523
410 0.0025000 || 400 .9926 | .9916 | .9889 | .9844 | .9781 | .9605 | .9368 | .8740 | .7070 | . 7134
8.5 | 0.002770T 361 | -90I5 [, 9908 ||.9877 | .9827 | .9758 | .9565 | .0304 | 8621 | .7794 | L6309
9.0 | 0.0030864 | 324 .9908 | .9897 | .9864 | .9808 | .9731| .9517 | .9231 | .8485 | . 7596 | . 6550
8.5 | 0.0034602 || 289 .9897 | .9885 | .9847 | .9786 | .9700 | .0462 | .9145 | .8330 | .7373 | .6336
8.0 || 0.0039063 || 256 .9884 | .9870 | .0828 | .9759 | .0663 | .938 | .9046 | .8151 | .7122 | . €082
7.5 || 0.0044444 || 225 .9869 | .9853 | .9805 | .9727 | .9610 | .9321 | .80 | .7944 | .6838 | .5748
7.0 || 0.005102 || 196 .9850 | .9831|.9777 | .9688 | .9565 | .9229 | .8739 | .7704 | .6516 | . 5379
6.5 || 0.005917 169 .9826 | .9805 | .9743 | .9640 | 19500 | .0117 | 8621 .7424 | 6152 | . 4375
6.0 || 0.006944 || 144 .9796 | .9772 | .9700 | .9581| .2419 | .8980 | .8419 | .7096 | .5741 | .453%
5.5 || 0.008264 || 121 .9759 | .9730 | .9645 | .9507 | .9318 | .8811 | .8173| 6710 | .5277 | . 4058
5.0 |l 0.010000 100 .9710 | .9676 | .9575 | .9411 | .9189 | .8599 | .7870 | .6257 | .4758 | . 3548
4.5 ||0.012346 || 81 .9C44 | .9603 | .9482 | .9286 | .9021 | .8329 | .7493 | .5725 | | 4183
4.0 ||0.015625 || 64 9554 | .9504 | .9356 | .9118 | .8799 | .7980 | .7021| .5102 | . 3555
3.5 || 0.020408 || 49 19427 | 19364 | 19180 | .8886 | .8497 | .7522 | 6425 | .4383 | . 2586
3.0 |l0.027778 || 36 .9237 | .9157 | .8925 | .8557 | .8078 | .6915 | . 5676 | .3581 | .2198
2.75(0.033058 || 30.25 | .9106 | .9016 | .8753 | .8339 | .7807 | .6539 | .4815 | . 3132
2.5 |l 0.04000 25 .8940 | .8833 | .8540 | .8074| .7481| .6103 | .4733 | . 2632
| 2.25| 0.04938 20.25 | .8727 | .8610 | .8271 | .7747 | .7089 | .5600 | .4194 | . 2227
2.0 | 0.06250 16 .8446 | .8313|.7930 | .7343]| .6615 | .5021 | .3600 | . 1778
1.9 || 0.06925 14.44 | .8309 | 8169 | .7768 | 17154 | . 6399 | . 4768 | .3330 | . 1503
1.8 10.07716 12.96 || .8155|.8008 | .7589 | 16949 | 6165 | .4501 | 3004 | . 14372
| 1.7 || 0.08651 11.56 || .7980 | .7828 | .7390 | .6724 | . 5914 | 4221 | (834 | (1267
1.6 || 0.09766 10.24 | .7783| .7624 | .7168 | .6478 | .5643 | .3928 | . 2570 | . 1108
1.5 |lo.11111 9 7560 | .7395 | .6923 | .6209 | 15352 | 3623 | .2304 | (095
—

123
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-1 o2 =1/2
Setvz=-—=Zandu-= (1 +.‘:Z._)
2 a a?

Then, from (A—l)

df(z) 1 (Z dhu dn"lu) (A-3)
B 2a

n
d=zlt dznt - dzn

dBu

Now, the problem remains of evaluating

We use the relation-
shipl 9 dzn

_il_.l_ (14+ aZZ)[J, _ ;L(/.L-l) (}.L—Z.) (p.—n+l) (Zaz)n {1 n(n—l) (1 +ozz?‘)

+
dzt (1 + az®)P~H 1.(u-n+1) 4ozl

+ n(n-1) (n-2) (n-3) l+a,zz>2 N n(n-1) (n-2) (n-3) (n-4) (n-5) (l%—azZ) :

2 !A(l-i'n‘*l) (u-n+2) 4022 3 !(p-—n-!—l) (L-n+2) (}i—n+3) 4ozt
N j
Wherefore,
dnu nil-3.5... (Zn-—l)azn n(n_l) aZ + ZZ __(A~A)
T A (-1) 2 2\n+i/ 2 - z -
dz® (2% + a%) (2n~-1) 2z

2(2n-1) (2n-3) 2z%

N n(n-1) (n-2) (n-32) (f.z_f_zi)z + }

P B ) s (G n) o )]

- [n(h—l)] [(2n-3) (2n=5) -+ (n+1)] [Zzz]n/z—l_. taz + 2]

éf-!— [n(n—-l) (n—Z) (n-3)] [(2n-5) (2n=7) --- (n+1)] [Zzz]n/z—z [aZ + ZZ]Z

19z p. Adams, Smithsonian Mathematical Formulae (Smithsonian
Institution, 1939), pp. 158, 192,
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Substituting (A-4) in (A-3),

n ! 2n-1)! 1 :
4 i(z) = (n+1) Z ) ___(____._)____ = (ZZZ)n/z-
dz™ 2t (2% 4+ a?‘)nf1 : {z'l__l (nt+1)!

2 (n-1)!
.,
z -2V
+ [a? + 2%] [22°] (2n-3) :
n_, (n-1)!
2
2 (n-2)!
R,
_l e 212 242 (2n-5)" 1
> [2® + z°]° [22°] - a3y
?-'3
2 (n-3)!
+ . .
a
: 2 !
I ! [2 + z?] 2
T
) 2
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: APPENDIX B. GENERAL TERMS FOR (29) AND (30).
t The odd Legendre polynomials arevexpressibl'e in the form:
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a b C '
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Ton-; ' '
. Uzn-z = - 1-xz * : (B-3)
Some values for and U,p -, are:
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1 _
Te Loy T L rsecroxees); Teo L [33x6-63xt s 35%2 - 5]
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The general terms for (29a) and (29b) are:
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The general terms for (30a) and (30b) are:
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APPENDIX C. SPREAD SOURCE FORMULA
IN LEGENDRE POLYNOMIAL FORM

Inserting (14b) into (24b) with x =Iz—and odp = faf - 2% dn tor

2 1

oz dx /1 , 3 4
=i S w3y r -3y s )

z? 1 dx n+1 l 3 *2n-1 aZn |
-:T)E 2/ —x_ [z( 1) seln (;) X0 PZn—1 (C_l)

1

‘ - 1
2 2N =2
_at 2 n+1 1.3 ---2n-1 (3 2n-3
"z n (D)5 4 ---2n z) S = P 1

Some useful recursion properties of the Legendré polynomials are: 19

(k+1) Pk.+1 + kP_k_1 = (2k+1)ka _ (C-2a)

. dPx  dPy-,; '
kP, = e (C-2b) .
P(1) =1 (C-2¢)
k .

dPx '
2 —— = - -

(1-x%) ™ k(Pk_1 ka) o (c. 2d)

Setting 2n-2 = k in (C-1) and using (C-2a), (C-2b), and (C-2c),

fl ket /_l
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< * k1o %

k-1
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k+1 % dx k- U
(C 3)
1
1 dPx  dPgk-, (
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Where Pk_ = P_k (X). The resulting form of GS is shown in (31a); ‘the general

term in (31b).

a® a
e & -2 ’ =24), ( - )
Since B2 - 12 (l—X?-) from (C ), the term Pzn—3 XPzn-z |

may be replaced by

_L Pen-z g ir (32a) and (32b)
'Zn-ZT es 1ng 1n‘ aj) an .

Inserting (14a) into (24b), with the previous substitutioris, for %(1,
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with Pk evaluated at X.
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RANGES OF HEAVY IONS IN AMORPHOUS OXIDES*

B. Dowmelg,T F. Brown, J. A, Davigs, axp M. McCarco
Research Chemistry Branch, Chalk River Nuclear Laboratories, Chalk River, Ontario
Received May 11, 1964

ABSTRACT

The range distributions of Na*, Ar#l, K%, and Xe!* jons in amorphous Al:O3
and WO; have been measured in the energy interval 0.5 to 160 keV. The experi-
mental technique consisted of measuring the transmission through oxide layers
formed anodically on metal foils. The penetrating tail of distributions measured in
crystalline targets is found to be absent in amorphous targets. Comparison with
the calculations of Lindhard et al. (1963), who assume a random distribution of
the target atoms, shows good agreement between theory and experiment.

INTRODUCTION

A large number of range distributions for heavy ions in metals have been
measured at this laboratory] and elsewhere§ using the electrochemical peeling
method (Davies et al. 1960a). Although comparison with the calculations of
Nielsen (1956) and Lindhard et al. (1963), based on randomly distributed
target atoms, shows rough agreement, the accuracy of the experiments has
been good enough to establish that the measured ranges in all cases were
significantly greater than the theoretically predicted ones. The effect of the
crystallographic structure on the slowing down of an atom, recently postulated
theoretically|| and verified experimentally (Piercy et al. 1963), offers an explana-
tion for the discrepancy between polycrystalline range measurements and gas
model calculations. On the other hand, this means that only a limited number
of data, for example, the measurements of ranges in gases by Lassen et al.
(1962), are available for comparison with gas-model calculations.

In this work, distributions in amorphous Al,O; and WOj; targets have been
measured in order to supply accurate data for comparison with random-model
calculations. The results also provide comparison data for single-crystal work
(Piercy et al. 1964; Kornelsen et al. 1964).

EXPERIMENTAL TECHNIQUES

The experimental technique consisted of letting a monoenergetic beam of
radioactive ions impinge on a target consisting of a metal foil (Al or W) on
the surface of which an oxide layer had been formed anodically. After bom-
bardment the target activity was measured; the oxide layer was then dissolved,
and the target activity remeasured. Repeating this experiment for different
oxide thicknesses produces a transmission curve as a function of thickness, or
an integral range distribution curve.

*Issued as A.E.C.L. No. 1995.

1On leave of absence from the Nobel Institute of Physics, Stockholm 50, Sweden.

tDavies ef al. (1960a); Davies et al. (1960b); Davies and Sims (1961); Davies et al. (1961);
Davies et al. (1963a); McCargo et al. (1963a); McCargo et al. (1963b).

§Davies et al. (1963b); Bergstrom et al. (1963); Uhler et al. (1963).
|IRobinson and Oen (1963); Beeler and Besco (1963); Lehmann and Leibfried (1963).
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The technique for producing reproducibly thin oxide layers of known .
thickness and dissolving them without affecting the metal has been described
previously for Al (Davies et al. 19600) and for W (McCargo et al. 1963a). To
minimize hydration (and porosity) in the preparation of the Al:Os films, an
almost nonaqueous electrolyte was used (50 grams/liter Na.B,0;-10H,) in
507, H,0 + 959 (CH.OH), (Vermilyea 1954) and all rinsing was done in alcohol.
The WOj; films were prepared in the manner described earlier.

Anodically formed oxide films are believed to be amorphous (Stirland and
Bicknell 1959; Young 1961). This was verified at this laboratory by electron
diffraction, which showed that the films contained no crystallites of dimensions
larger than 100 A.

The Chalk River isotope separator was used to produce the beam of radio-
active ions. The separator produces ion beams in the energy range 20-70 keV.
To obtain lower-energy ions the beam was electrostatically retarded. To obtain
higher energies the beam was accelerated, or multiple-charged ions were used.
As discussed in an earlier paper from this laboratory (Davies et al. 1963a),
this introduces the complication that the small fraction of the ion beam that
becomes neutralized after leaving the magnetic field will hit the target with
the wrong energy. With a low enough pressure in the machine this component
can, however, be made very small, =0.1%.

The radioactivity in the targets was measured with an end-window flowing-
gas proportional counter having a low-energy discriminator to minimize
background.

EXPERIMENTAL RESULTS

As discussed by McCargo et al. (1963a), one factor to be considered in the
interpretation of range data is the loss of impinging atoms from the target
during bombardment, either by wide-angle scattering or diffusional escape. It
therefore became necessary to measure the sticking factor (the fraction of the
incoming ions that becomes trapped) in order to establish the significance of
the data obtained. '

The sticking factors were measured for all ions used both in Al:O3 and WOs
over the whole energy interval employed, using the method described earlier

Brown and Davies 1963)) For energies above 5 keV the sticking factor was
~0.95 in all cases, which is close enough to unity to make corrections to the
range insignificant. Below 5 keV it dropped rather rapidly and the results were
very irreproducible, indicating that range measurements in this energy region
are of doubtful significance when made by the present technique.

Range distributions were measured for Na2, Ar4, Kr®, and Xe'” in AlOs3
and WOj for energies between 0.5 and 160 keV. Examples of the experimental
results for energies above 5 keV are shown in Fig. 1 for Kr% in Al,Os and in
Fig. 2 for Na? in WOs.

Below a fractional transmission of 107 the measurements became irregular
and irreproducible. We believe that this was caused by flaws (pinholes, etc.)
in the oxide films due to handling. This explanation is supported by an
experiment performed with extra care in which we managed to follow the




CANADIAN JOURNAL OF PHYSICS. VOL. 42, 1964

o 20 kev
“ 160 keV

NEUTRAL !
TAIL

TRANSMISSION (%)

I l | 1 l |
24 28 32 36 40 44 48 52 56

LAYER THICKNESS IN WEIGHT OF AIZOS(/.LQ/CmZ)

Fia. 1. Integral range distributions of Kr® jons in Al,O,.

RANGE DISTRIBUTION OF Na®* IN AMORPHOUS WO,

8
z
=)
1]
]
=
g
@
=

<;\IEUTRAL TAILS

1 1 1 L 1 [ [E—
10 20 30 40 50 60 70 80 90

LAYER THICKNESS. IN WEIGHT OF WO, (y.g/cmz)

¢ -

[SER S S

F1G. 2. Integral range distributions of Na?* ions in WOj.

transmission down to 10=°. The portions marked “neutral tails” in the figures
are due to the unretarded fraction of the incoming beam, as mentioned above.

Figure 3 shows a comparison of the range distribution of 40-keV Kr® in Al
and in Al;O;. The most striking feature of the distribution in the oxide is the
lack of the penetrating tail observed in polycrystalline and monocrystalline
measurements (Piercy et al. 1964). This further supports the assumption that
this tail is due to crystallographic effects.

Figure 4 shows the range distributions for Xe!? in Al;0; for low energies.
Only the experimental points and the bounding curves are shown. The points
are quite irregular and the variation in median range is at most a factor of 2
for an energy variation of a factor of 10. A possible explanation for this effect,
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as well as the irreproducible sticking factors at these energies, is that the oxides
are not truly amorphous but consist of microcrystallites perhaps 50 A in size.
This would not affect the high-energy data, where the range is greater than
the size of the crystallites, but the low-energy runs would be influenced
considerably.

In Tables I and II the characteristics of the measured range distributions

TABLE 1
Characteristics of range distributions in Al;,04

Energy R, Rn R Wems
(keV) (ug/cm?) (pg/cm?) (ng/cm?) (pg/cm?)
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are given. The parameters are:

p = most probable range,
m = median range,
= mean range, and
Wims = root mean square deviation from the mean range.
The unit for penetration depth employed is the total weight of Al,O; (or WO;)
per unit area (ug/cm?).
For the lower energies only the median range is given. The brackets indicate

the uncertainty in these numbers. The errors in the other data are 469, for
R, and R, and around +109% for R, and W,y,. The different ranges (R, Rny,
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TABLE II
Characteristics of range distributions in WOj3

Energy Rp Rm R [Vrms
(keV) (pg/cm?) (pg/cm?) (ug/cm?) (ug/cm?)
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- and R) are almost identical, in marked contrast to what is observed in crystal-

line material. W ns is within 209, of the half-width at half-maximum of the
differential range distribution.

COMPARISON WITH THEORY
The experimental results will be compared with the theoretical predictions
of Niclsen (1956) and of Lindhard et al. (1963).
Lindhard et al. (1963) assume a Thomas—Fermi potential for calculating the
energy lost by elastic collisions. They obtain a universal range-energy curve
in terms of dimensionless range and energy parameters given by

M;
(My+ M2)*’
abl,
Z1Zg€2(M1 + Aﬁr‘z) !

2) v =E

where R is the range,
E is the energy,
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N is the number of target atoms per unit volume,
Zyand Z» are the nuclear charge of the incoming particle and the target atom,
respectively,
My and 11, are the corresponding masses,
e is the electronic charge,
and @ is the screening radius given by

(3) a = a9-0.8853 (Z¥3 + Z,23)-12,

where ay is the first Bohr radius in the hydrogen atom.
The contribution of inelastic collisions is included by adding to the elastic
stopping power a term that in dimensionless units has the form

(4) (de/dp)lnel = kfl/‘z:

where

0.079321%- ZY* (M, + Mo)*"*
(ZV° + 2 MMy

The calculations thus produce a set of curves of p versus ¢, each characterized
by the value of &.

The straggling or mean square deviation from the mean is given as curves
by plotting the quantity

(5) k=t oy

(My + My)* AR
4M M, R’

as a function of e for different values of k.

A complication in comparing our results with the predictions of Lindhard
et al. is that the effect of the oxygen in the oxide has to be corrected for. If the
stopping cross-sections due to the different atoms in _a compound are all pro-
portional to the same power of the energy, simple formulae can be worked
out for the range and straggling. In a compound, C = A, B,, the range R

is given by

Re _ 1
Me ™~ (ny[A/RA,) + (yMs/Rg) ‘

Mg, My, and My are the masses of the compound C and the constituent atoms
A and B, respectively, and R, and Ry are the ranges in pure A and B, re-
spectively. (A similar formula is given by Lindhard et al.)

Similarly the straggling is given by:

(6) (R in pg/cm®).

(7) we? = x(Ma/Ry) (RB/MB)wi + wa;
¢ x(My/Ry) (Re/Mg) + vy

where w/? is the relative straggling (AR2/R 2).

To get the range in Al from equation (6).and the measured range in Al,Oy"
- we need to know the ratio between the range in Al and that in O. We assume
that this ratio is given accurately enough by the calculations of Lindhard
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et al. (1963). The justification for this assumption is that even the uncorrected
range in AL, Qj; agrees fairly well with the theory. This ratio and the measured
range are used to calculate the range in Al and in O from equation (6). The
experimental range in WO; and the range in O obtained above are then used
to calculate the range in W.

To obtain the straggling, an assumption has again to be made about the
ratio between the values in Al and in O. According to Lindhard, the quantity

AM M. R?

varics very slowly with i, M, and e. Assuming it to be constant, we get a
" ratio between the straggling in Al and the straggling in O. Equation (7) then
gives the straggling in Al. For reasons outlined below, no comparison with
theory was attempted for the WO, straggling data.
" The data still have to be corrected for the fact that the theory involves the
range distribution along theMe, whereas our measurements
give the range distribution projected onto the direction of the incoming beam.
Lindhard ef al. give this path-length correction for the range as a function of
energy and the parameter & for mass ratios p (u = M o/ M) up to 2. For larger
mass ratios (Na and Ar in WOs), their approximate formula was used.

The path-length correction to the straggling is more difficult to assign.
Lindhard quotes a 309, correction to the relative straggling (ARZ/R?) in the
case where p = 1. We have applied this value to the case of Na* in AlO;
and assumed the correction to vary linearly with g up to g = 1. No attempt
was made to compare the WOj straggling data with theory because of the
difficulty of finding a suitable path-length correction for the large mass ratios.

Figures 5 and 6 show the mean ranges in ALLO; and WO; compared with the
theory of Lindhard et al. Figure 7 shows the straggling in Al,Os coempared
with theory.

The accuracy of the range analysis described above depends on the difference
between the constituents of the oxide. For Al,Oj, it is thought that the analysis
does not contribute any error, and the £69%, error of the experimental ranges
has been used in the figure. For WOj; the assumption that the stopping cross-
sections of W and O are proportional to the same power of the energy is not

SRS

agood och_etMSiss__/__jic_tly_gr‘gggﬂ_ly if the e value is the same in both W
'/:;\;]LWL Lindhard ef al. 1963, Fig. 2), which is obviously not the case. A

tentative error o ixﬁ?iﬁig. 6.
Owing to the uncertainty in estimating the path-length correction, no errors
are shown for the Na2 and Ar* data.

For the straggling data in Fig. 7, the error is largely due to the uncertain
path-length correction. An error of 4309, has been assigned to these data.

From Fig. 5 it can be seen that the agreement between theory and experiment
for mean ranges in Al,O3 is excellent. Only 4 points out of 19 do not agree with
theory within the assigned error. For the WO; range data in Fig. 6 the agree-
ment is not so good. This can be attributed, at least partly, to inaccuracy in
the analysis.

s e
/7: f M’l
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Fi16. 7. Comparison of the experimental relative straggling in Al.O; with the theoretical curves
of Lindhard et al. The appropriate k value for each projectile has been calculated from equation

(3).

The straggling data in Fig. 7 agree fairly well with theory, although the
experimental data are slightly higher. This may be due to the mathematical
approximations used by Lindhard et al. (1963) which, according to their paper,
tend to give too small values to the relative straggling.

Oen and Robinson (1964) have calculated the range in a target consisting of
randomly distributed atoms using a Monte Carlo approach. A detailed com-
parison is not possible, since the calculations deal with targets containing only
one type of atom. However, the results suggest that, if calculations were made
specifically for WOj; and Al,O;, good agreement with experiment would be
obtained. A detailed discussion is given by Oen and Robinson (1964).

CONCLUSIONS

Range distributions in amorphous solids lack the penetrating tails observed
in crystalline materials, further confirming the assumption that these are due
to crystallographic effects. The most probable, median, and mean ranges are
very close, indicating a rather symmetrical distribution. Comparison with the
theory of Lindhard et al. over the energy interval 10 to 160 keV shows that this
theory predicts satisfactorily the range and straggling in amorphous solids.
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STRAGGLING AND PARTICLE IDENTIFICATION IN SILICON DETECTORS*
H. BICHSELT

Lawrence Radiation Laboratory, Uniue)'sity of California, Berkeley, California

Received 25 August 1969

The distribution functions for the straggling of charged particles
in silicon detectors are given in a comprehensive graphical form.
Approximate quantum mechanical corrections have been applied

1. Introduction

A system frequently used for the identification of
charged particles of kinetic energy 7 consists of one or
more thin silicon detectors (“4T counters”) in which
the particles experience energy losses 4, and a final
detector (7 counter”) thick enough to absorb the
otal residual energy of the incident particles!). The
resolution of this system is limited by straggling,
Jominated by the effect in the AT counter. If different
particles of the same incident kinetic energy T have
overlapping straggling curves in the thin detector, it

* Work supported in part by the U.S. Atomic Energy Commis-
sion and Public Health Service Research Grant No. CA—
03150 from the National Cancer Institute.

" Now at the Department of Radiology, University of Washing-
ton, Seattle, Washington 98105, U.S.A.

TN oo T T T T
x=0.215 x 0841 K :1.873
£ =19 kev £=37.0 kev £:54.9kev
B=235kev \ B:404kev B=553kev
3 =404 kev /\ <=400kev o:39.8kev ]
\

Relative count rate
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Energy loss,A (keV)

ol
160 200

fig. 1. Calculated energy losses of 40-MeV protons, deuterons,
nd tritons in a silicon detector of thickness # = 20 mg/cm2. The
ime numbers of particles of each kind are incident. The mean

nergy loss A is quite different from the most probable energy
i5s, especially for the protons. If the cross-over point of the
urves s selected for the scparation of protons and deuterons
=327 keV), about 2.7% of the protons will be identified as
‘uterons, while about 1.5% of the deuterons will appear as
otons. Similarly, for 4 = 480 keV, about 3.6% of the deuterons
Al appear as tritons and 2.6% of the tritons will appear as
“uterons. It should be noted that, with the assumed system, it
*not possible to distinguish between protons and deuterons in
the overlapping region (approximately 300 to 420 keV).

to the Vavilov functions.
A simple identification procedure for use with a digital
computer is described.

will not be possible to identify particles having energy
losses in the region of overlap (figs. 1-3).

It is often assumed that, for large absorber thick-
nesses ¢, the straggling curve is Gaussian?). This is
only an approximation (see figs. 5-7). A better approxi-
mation is given by the Vavilov theory?®), which has
been shown to be fairly accurate for the description of
the energy loss of charged particles in silicon®-¢).

The observation of pulse heights in a thin detector
is described by the probability density function f(4, ),
but the determination of the overlap of the energy loss
functions requires a knowledge of the distribution
function @(4, 1) = 4 f(4", 1)d4’. Notice that phy-
sicists frequently wuse the expression “distribution
function” to describe f1 (4, 1). If the mean energy losses
of particles A and B are called 4, and 4j respectively,
it will be found for an energy loss 4, defined by

T T T T T T T T
K=0036
£ =834kev
6oL =417 keV ]
Bp=11Tkev
x=0.139
i £=15.5keV )
o N x=0306
s =406 keV £ =237 kev
= 40l o Ag=197kev o= 40.3 keV
5 Y &, =270kev
o I\
o | I 4
@ |
= |
2 |
© 20~ —
@ 1
I
0 i L1 1
50 100 200 300 400

Energy loss, A (keV)

Fig. 2. Energy loss of 100-MeV P, d, trin a silicon detector with
thickness 20 mg/cm2. For protons, with 4 = 117 keV, the most
probable energy loss is about 93 keV. About 14% of the protons
will lose energies in excess of 145 keV, about 7% of deuterons will
have smaller energy losses. About 5% of the protons suffer
.energy losses exceeding 200 keV; 23% of the deuterons exceed
energy losses of 218 keV (intercept of d and tr curves), and
7.5% of the tritons fall below this point. A detector this thin
would obviously not be practical for particle identification at this
energy.
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da< 4 < 4y that a fraction
Py = ]“‘p/\(dlat) (n

of all particles A will exceed the energy loss 4,, while a

60 T T PN T T
g-:é'azeakev \ e
: \ € =l19kev
o805k | \ S Gosev
@ a0t =
2
<
=) — —
o
(8]
Q
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°
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Energy loss, A (keV)

Fig. 3. Energy-loss distribution for 100-MeV 3He and 4He jons;
7.2% of the 3He will experience energy losses larger than 1213 keV
(crossover point of the curves), and 4.3% of the 4He ions will be

found below this point.
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fraction
Py = ®y(4,,1) 12

of all particles B will have energy losses smaller than 1
The distribution functions are given and discussed

this paper. Also, some comments are made about ;.

use of on-line computers in particle identification.

2. The distribution functions

The probability that charged particles will experieny,
energy losses between 4 and 4+d4 in traversing g
absorber of thickness ¢ is given by the probabili.
density function f(4, t). which also depends on ..
charge ze and the velocity v = fic of the incii.-
particle. The discussion in this paper is based on ;.
Vavilov theory®), with some corrections brouy:.
about by the use of quantum ‘mechanical coli .
cross sections”®) instead of the 1/E2 cross section v.. -
by Vavilov. An extensive discussion has been g,
by Seltzer and Berger®). Their nomenclature is o'
for this discussion. It has recently been founi
that, in the stopping power, there is a charge depen
ence over and above the z? term usually assumed |
presumably would appear in the theory with the use .-

2
0001 0002 0004 .00I .002 004 006.0I 02 04 .05.086
T T T T T T / T T T
3 4 7
s / 5
B / /
2 A B
4 /
4
V4 /
/ /
' Pl /
/
/,/’
= 3
4 -~
oe=—1"
00l 002 00 0070l 02 04 07 | 2 4 710 20 40

Kinetic energy of proton, T (MeV)

Fig. 4. The reduced stopping number B for protons in silicon, p%~ 2 T/Mc2. The stopping power is given by

S = 0.1531 22 B/p?

the mean energy loss by

7 = 153.1 22 ¢ BJp?

(MeV cm?/g) ,

(keV) .

The curve is semi-empirical, and applies approximately for other particles. For 82 > 0.04,
B = In [5891 82/(1 —82)] — 32— 0.0019//32.
For /i < 0.024 z# the nuclear charge is partly shielded by atomic electrons, and z has to be replaced by z*, given approximaic
z* = z[1—exp (—1.316x+0.1112 x2—-0.065 x3)],

where x = 100 8/z% and z = 2. For x < 0.27, the theory does not apply. For the solid curve, a charge state correctivn
applied for all particles. The dashed curve is B corrected for the charge state of the proton.
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higher Born approximations, and would influence
the straggling somewhat at low energies. No correction
for this effect is included here. -

The distribution functions required for the deter-
mination of the overlap of the straggling functions of
different particles in a given AT counter are defined
in terms of the modified Vavilov functions™8):

P(4,1) = fd f4',0dda’, 3)
0
with
®(c0,1) Efwf(dl,t)ddl =1.
0

The parameters z and f§ are i mplicitly included ineq.(3).
The accuracy of f(4,¢) is limited due to uncertainties
in the quantum mechanical corrections (including the
deviations from the z2 behavior); the numerical inte-
gration in eq. (3) is accurate only to about 0.2%. The
overall accuracy of @ is estimated to be about 0.01
for > 0.3, and about 0.005 for & < 0.3, “For the
present application to silicon absorbers, the following
reduced variables have to be calculated:

0’ = 78.22x 1z*(1 -4 B%) (1 +¢) Q'I(1-B* (keV?),

)
¢ =007654x1z*/p* (keV), )
#=7490x 107" x 1z2(1 — p2)/8*, (6)

where particles of charge ze, rest mass M, and initial
welocity v = fc are incident on a silicon detector of
thickness ¢ (in mg/cm?); ¢ is the quantum mechanical
correction, given approximately by

1= 0.001 §6 $2 In (102 B2 +0.746) 7
for 0.0005 < 2 < 0.0075,

1=0.0009 ~*1n (306 *)  for 0.0075 < f2; (7)

0'is a factor caused by the increase in straggling due
o the spread in energy of the particle beam'!);
ith Ty = T-12,

)= (T/T,)* for T,/T> 04, Bw~23,

V=099 (T/T)*  T,/T>04, B~35, (3)

1'=0.985(T/T)?} T,)T> 0.6, B=x69,

shere B is the stopping number (fig. 4).

Here o is the standard deviation of the straggling
function, and ¢ and x are the parameters of the
Vavilov theory?). Furthermore, the mean energy loss
has to be calculated:

er J(4,04d4 = 1S = 2¢B (keV), (9)

where S in (keV cm?/mg) is the stopping power!2-14)
and B the stopping number (see fig. 4). The velocity
should be calculated with

B* = t(z+2)/(t+1)2, with 7 = T/Mc®.  (10)

Notice that 6% = &2(1 —L f2)/x except for the correc-
tions given by ¢ and Q’. The probability densities
S(4, 1) are given in ref. ° ) in terms of the parameters x
and f and as a function of the dimensionless energy-
loss variable

A =Z+(4-2)j¢, (11)
where '
2 =0577216—1—p*—In x.

For present purposes, another dimensionless energy-
loss variable is more suitable:

p=U-D)o. ' (12)"

The parameters x and 2 are kept unchanged.
Eq. (3) can be rewritten in terms of these parameters
as

P(p,%, B) = fo f(p',%, p)dp'. (13)

Distribution  functions have been calculated by
numerical integration of f(p’, x, B), and are given in
figs. 5-7 for three values of B2 The dependence on
B? is quite small, and it will not be necessary to use
interpolation for 2.

The functions presented here do not include correc-
tions for effects connected with the operation of silicon
detectors, e.g., electronic noise, inhomogeneity of
detector thickness, counting statistics, and channeling.

Since the function @ does not change very much
for » > 6, the exact choice of » for T,/T. < 0.8 is not
very critical. It is seen, though, that even for » = 10
there is a difference between the straggling function
and a Gaussian curve (see fig. 6).

Note that the “skewness parameter” y, in fig. 4
of ref. ') is related to x in a simple way: » ~ 1/(4 7).
For 8% = 0, the expression is exact.

A Fortran program VPLOT, giving graphs similar
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modified for quantum mechanical corrections, for 32 = 0.04 (protons of about 20 M« -
of %. @ is the fraction of particles experiencing ¢cts
The location of the mean is given by p = 0.

Fig. 5. Contour lines for straggling curves,
The ratio p(D, %) = 0} q——Z)/r is plotted for different values of @, as a function
losses less than 4g, eq. (1). The accuracy of the numbers is about 3%.
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to figs. 1-3 and both S(4.t) and (4, 1), is available
from the author.

It should be noted that it may frequently be easier
to calculate the moments of an experimental straggling
function and compare them with the theoretical
moments'?) than to calculate a Vavilov function.

3. Approximate expressions and examples

For estimates at low and moderate energies, the
following simplified expressions can be used for the
parameters:

0 =9zJ1(keV),

& =362 tA|T (keV),

% =163 22 tAYT?
“B? =0.002 14 T/4,

where 7 in (MeV) is the kinetic energy, and A the
atomic number of the incident ion. If the energy loss
4 =(T—-T,) in the AT counter amounts to more
than 10% of 7. ¢ should be multiplied by J O’ from

eq. (8).

Examples

1. Infig. I, to determine the fraction D34 of protons
exceeding an energy loss 4 = 300 keV, calculate
ps using ¢ from the figure: P = (300-235)/40.4
= 1.61. From fig. 6, for x = 0.215, we obtain
® ~ 93%, showing that 7% of the protons suffer
energy losses of more than 300 keV.

2. Consider deuterons and tritons of 40 MeV. To
calculate the fraction of particles appearing
beyond the energy loss 4, = 2(d,+14,) as a
function of detector thickness t(mg/cm?), we have,
from " ref. %), S, = 20.2 keV cm?/mg, S, =
27.7keV cm?/mg, from ref. 12), B2 = 0.0414,
B& = 0.0279, x, = 0.0419 L%, = 0.0934¢,p, =

—pq. We get
t(in mg/cm?)
3 10 30 100
Aa(keV) 60.6 202 606 2020
Tir(keV) 83.1 277 831 2770
Am (keV) 71.8 239.5 718 2395
a(keV) 15.9 29.0 50.0 89.5
Pa 0.71 1.29 2.24 4.2
%a 0.126 0.419 1.26 4.2
e 0.28 0.934 2.80 9.3
Dy (%) 82 89 97.7 99.5+
=D (%) 28 9 1.9 0.2—
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4. The use of on-line computers in particle identification

Different approaches have been used for the iden-
tification of charged particles using the A7-T system
described in the introduction'®*~'®) [see, e.g., ref. S
for a review].

The following method seems to be the simplest and
also the most accurate for use with digital computers,
if a few hundred words of fast memory are available
to store range-energy tables for the different particles
to be identified. Basically, the method consists of a
table look-up of the ranges associated with the energies
Tand Ty, = T— 4. The range difference r,, = R, (T)—
—R\ (T)) for an arbitrarily chosen particle of mass M
is compared with the detector thickness ¢. If

(t=t) < ry < (t+1,)

the mass M of the detected particle is as assumed.
For ryy < (t=1)) or 1, > (t+1¢,) the range table for
another particle has to be used. The determination of
appropriate values of 1, and t, is described later. A
suitable sequencing of the table look-up has to be
chosen. To achieve the fastest operation, it is necessary
to use as table entries the ranges associated with the
energies corresponding to the center of each channel
of the pulse-height analyzer. If the analyzing systems
for the two counters have different calibration con-
stants, the pulse height in one of them has to be
converted into the equivalent pulse height in the other.
It is then possible to use the pulse heights directly as
the index for the range tables.

Sample program ‘

The pulse height from the T counter is called JT,
from the 4T counter, JD. The ratio of the calibration
constants Cr (in keV/channel) of 7 and Cp of AT is
CA = C;/Cp. The range table RA has been calculated
previously for three different particles in such a way
that one has RA(JEA) = R [TJEA)], where T (JEA)
= Cp-JEA, and RA(JEA+1) = R[TJEA)+C,).
In other words; the range tables are listed for energies
equal to the channel width multiplied by an integer.
The lower and upper limits, #—# = PIL and t+1¢,
= PIU, for each particle have to be determined either
from diagrams corresponding to figs. 1-3 or from
the curves in fig. 5 of ref, '4). If the detector thickness ¢
is not known accurately, it can be determined experi-
mentally in preliminary test runs. '

SUBROUTINE XIDENT (JD, JT, ID)

COMMON/RD/RA (3,450), PIL(3), PIU(3), CA
I JEA = INT(CA* FLOAT(JT))

JEF = JEA+JD

DOS5M = 1,3




2 TA = RA(M, JEF)—RA(M, JEA)
IF (TA-PIL(M)) 7,3,3
31ID=M
IF (TA-PIU(M)) 9,9,5
5 CONTINUE
ID =99
9 RETURN
END
This program is especially simple for Cp = Crt
statement | can be eliminated, and in each test for a
mass, three subtractions are necessary, and two
comparisons.
In a program using the relation

-

Ry(Ty) = (M/[2%) Ry(m, x Tyy),

where R, is the proton range and m, = 938.259 (MeV)/
Mc?, the two products m, Ty and 1, (Ty—4), and
also (M/z*) (Ry— Ry,), have to be calculated before the
comparison can be made. Notice that a considerable
simplification can be introduced if R, = CT*, with a
constant a for a certain energy range. Then

Ry(Ty) = (M/z*) Cm{ T*,
and
<y = Ry (To) — Ry (Ty = 4))
= (M[z*) C {mf [Ty —(Ty— 4D
Since {r) = t, the experimental coefficient
[Ty —(Ty— 4Dt = (M <m‘:>)

can be used to determine the identity of the particle?).
The method breaks down if « is not constant [see
fig. 3 of ref. 1#)]. Since T can of course also be obtained
in a table look-up, this method is simpler if a can be
considered to be constant.

H. BICHSEL
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Synope

A tbeoretical discussion is given of the range of heavy ions with moderate
velocity., The treatment is based on the theery of quasi-clastic collisions given
clsewhere. The region where cleclronic and nuclear stopping compete is of par-
ticular interest. Use is made of a simple velocity proportional Thomas-Fermni lype
formula for clectronic stopping, and a universal approximate differential crocgs
section Tor scattering. Simplificd models of nuclear scattering assuming power
law scatlering are also included. They turn out to be useful for explorat Ty com-
putalions of various range quantitics.

The straightferward theory of ranges is studied in § 2. Range curves are
computed for any atomic nurbers of particle Zy, and substance Z, It is found
thal when nuclear stopping is dominating, a g - ¢ plot gives a universal range cnergy
description.

Probability distribution in total rainge and various averages are studied
(§ 3), in order to assess corrections to measurenients when necessary. Similarly,
corrections to measurements of projected ranges are oblained (§4). The range
correction due to nuclear stopping is obiained for ions of high initial energy.

In §5 a survey is given of numerous recent measurenients of range. They
are found to be in fair accord with theorctical results, for energies belween 100
MeV (fission fraguients) and ~ 1 keV.
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§ 1. Introduction

The present paper is a theoretical study of ranges of heavy ions of low
clocily, and their connection to the basic problem of quasi-elastic collisions
svtween dons and atoms. Three characteristic features give rise to com-
clications. First, both electronic and nuclear stopping must be studied
iroroughly, because they are similar in magnitude. Sceond, because of the
trequent large deflections of the ions one must distinguish carefuliy be-
fween various range concepts. Third, the variely of choice of alomic number
¢ both don and subslance gives an additional difficulty. We shall try {o
piow that our present knowledge of quasi-elaslic collisions, in spiic of the
‘hove complications, can give us a simple and fairly accurate range theory.
©point of fact, in the following we use a much simplificd deseription of
jrsi-elastic collisions, which could be improved upon without difficulty.
tpects of guasi-elastic collisions ave studied also in three associated papers:
viles on Atomice Collisions I, 11, and IV. The aim is to exploit similarity
vuperties of Thomas-Fermi type in collisions between heavyjons and atoins.
v fact, similarity enables us to lreat in a comprehensive way both slowing-
cwn and damage effects by heavy jons.
The tolal range of a swift particle may be observed in track deteclors
v photographic emulsions. The observation of many tracks can then give
i+ probability distribution in total range. T measurements of this kind the
seeved range depends on energy losses only, and not on scattering of the
siticle. For energetic heavy particles this separalion of energy Joss from
diering is especially valuable, since the two are due fo

sses, el respeetively electron excitation and Coulomb scattering by the

unconnecied pro-

However, in nearly all other cases one observes somewhal dilfercnl and

o wel-defined types of ranges. It is then customary lo make corrections
Uinulliple scallering in order lo obtain the tofal range, bul since lhese
treetions arve not insignificant--ceven in cases like high encrgy protons where
feetions are small—it would seem appropriate to introduce explicitly these
brotvpes of ranges.

ov

1*



4 Nr. 14

The scattering of a particle—in contrast to its encrgy loss—is always
dominated by nuclear collisions, i.e. deflections in the screened electric
field of the atom. In the case of eleclrons, large scattering angles are quile
common during slowing-down. For heavy particles of high energy (e.g.
protons with MeV-energics), scatiering effects are relatively small, but since
a high precision is desirable here, the distinction between different types
of ranges again becomes important. Although the description in the following
could be applied to eleetrons and lo fast heavy particles, we shall aim at
the case mentioned i the beginning of the introduclion. In fact, for heavy
ions of low velocily, e. g. v~vp = e2[li, scaltering effects are large and the
scaltering can not be completely separated from energy loss, simply be-
cause the nuclear collisions here begin to dominate the encrgy loss too.
This somewhat complicated casce will be used as a basic example in our
general discussion of range concepts.

The following discussion does not at all pretend to give an exhaustive
trealiment of range concepts. Thus, we arc throughout concerned with stop-
ping by a random system of atoms, i. e. uncorrelated atoms and separaled
collisions. This might never scem to include stopping of a relatively slow
heavy ion in a solid, where the interatomic distance is shorl and atoms are
arranged in a periodic Jaltice. Stll, the effects are only sometimes large;
they are not well understood and appesy to be dependent on the structure
of the lattice (cf. § 5).

Before turning to the various—and often complicated—range concepls
and range distributions, we may take a more straightforward point of view.
In § 2 we proceed as if the cnergy loss along the path was a nearly con-
tinuous process. This is not al all a poor first approximation. It both
cnables us to get a clearer picture of the essential points and permits com-
parisons with experiments (cf. § 5).

- § 2. Siraple Unified Range Theory

Suppose that the range along the path is a well-defined quantity, so that
we need not distinguish befween c¢. g. average range, most probable range.
and median range. We may inlroduce first the simple concept of specific
encrgy loss, (dE/dR),—or average energy loss per unil path lengihi-—defined by

dr ’ )
N -417\ 6T 2.1)
an N-S \.baa , 2.1
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where N is the number of scallering centres (e. g. aloms) per unit volume
and S the stopping cross section per scatlering centre. Further, do is the
differential cross section for an energy lransfer T to atoms and atomic
electrons. '

The basic range concept is then obtained simply by integration of (dE[dR),

EdE 1 (F dE
(e = f\o(dE'/dP) \& JSCEY (2.2)

I'he formulations (2.1) and (2.2) give a simple connection hetween range,
specific energy loss, and differential cross section. We do not at present
distinguish between diflerent types of ranges. A Dbelter understanding of the
conneclion between (2.2) and e. g. the average range is obtained in the
detailed discussions in § 3.

In an analogous way we may introduce the range straggling (cf. Bour
(1948)). Similarly to (2.1) the average square fluctualion in energy loss
hecomes

e SN
(4E)? = NQ® dRy= NdR gda T, (2.3)
N~ . D

it the individual events have average occurrence NdRdo, and are uncor-

related. We may next derive the average square fluctuation in ra nge, (AR)2,
using the present assumplion that fluctuations are small,
FARNQY(EY) 1 v Q2 (E
(AR)? = \ AB N (B ——fﬂ r—,q ( ) (2.4)
Yo (@EdR)? NZ SE(EY

If we were precise, we would say that the interpretation of (2.4) as the
average square fluctuation in range is not quite correct. For the present pur-
poses, however, we have by means of (2.2) and (2.4) defined the range,
I, and its fluctuation, 4R, and ihe resulls are sufficiently accurate for most
purposes. We now use (2.2) and (2.4) in a first study of the
neavy ions.

Quite apart from using at fivst simple expressions like (2.2) and (2.4),
it seems important—at the present slage of accuracy of theory and ex-
perimentis—to be able to give a comprehensive description of slowing-down.
[t would for instance be futile 1o aim al an individual stopping curve for
every one oul of ~107 possibilities for the set of atomic numbers (7, Z,),

where the suffixes 1 and 2 denole the penetraling particle and the atoms
of the medium, respectively. If we are concerned with very high velo-
cities, where the Bethe-Bloch stopping

ranges of slow

formula applies, ihe question of
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0<ov<vpr. In the whole of this velocily region simple theoretical considerations Jead tor
velocity proportional stopping, and a Thomas-Fermi picture shows that (Notes on
e e S A s ——n O H

Atomic Collisions, IV; sce also Linpianp and Scianer (1961))

6 Nr. 1¢

dependence on Z; drops out because the stopping is simply proportional
to Z2. In that case the dependence on Zp is not far from being given by a
Thomas-Fermi description, i. e. Bloeh’s velation I = Zy+Jy, and only when
high accuracy is demanded need we introduce deviations from the Thomas-
Fermi vesults. Considering again the present case of comparalively low
velocities, where the stopping is not proportional to Z%, it is very important
that descriptions of a Thomas-Fermi-like characler are introduced, even
though the resulling accuracy might not be high.

In peint of fact, we hope to show in this scction, and in § 5, that a Thomas-
Fermi-like treatment of the dependence on both Z; and Z, has a quile
satisfactory accuracy at the present slage of experimental precision. Our
treatment should be based on a self-contained theory of the quasi-elastic
collisions between ions and atoms. This theory will not be derived here;
it is studied in two associated papers (Notes on Atomic Collisions, T and
1V, unpublished). We shall merely summarize a few results of interest to
us in the present connection (cf. also Taxpranp and SCHARFF, (1961)).

Electronic stopping

It is well known that for penectraling charged particles of high velocity, the
energy loss to alomic electrons is completely dominating. The corresponding stopping
cross section per atom is denoted by Se, so that the specific energy loss is N-Se,
where N is the nmmber of atoms per unil volume. At high veloeities Se increases
with decreasing particle velocity and has a maximum for a velocily of order of

52/3 . .
vy = vo-Zy . However, we shall consider low velocities only and in fact assuine thal

VARAIRY
2 2 2 .
Se= & -8me g a ~;,-0, V<D =Dy él’B, (2.5)

; 1 2 5203 | 2 . .
where the constant & is of order of Al/G, and 27 ~ Al’?’ + 12/3. It is interesting that
the approximate formula (2.5) holds dowin lo extremely low velocities, i. e. also for

<< vy, in COI{U__”’C};?};J_? previous theoretical descriplions, Wher(;Sc was assuniced to
vanish for p<uvg (cI. Boun (1948), Surrz (1949)).

TC should be emphasized that (2.5) is approximate in more than one sensc. The
constant in (2.5) is based on Thomas-Fermai arguments, and it is to be expeected
{hal fluctuations around this constant ean occur, especially for Zy S 10%. Morcover,
a precise proportionality to v will not be correct over the whole of the velocily
‘region v < vy. However, in the present context we shall not analyse electronic siuj’u‘:i 3
in detail. As to stopping near the maximuin v ~ vy, ¢f. NORTHCLIFFE (1963).

* The presence of such ionic shell effects is confirmed in the systemalic weasurements by
Omrod and Ducxworntn (1963), WiaNcasrpex and Drexwontu (1962).
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Another important circumstance may be mentioned. The cncrgy loss to elec-
trons is actually correlated to the nuclear collisions, and in eclose collisions con-
siderable lonization will take place. Although the correlations are fairly well known,
we disregard them in first approximalion and consider electronic stopping as
continuous process. The correlation may be of some importance
ling or higher order moments of {he range,

a
especially in stragg-

Nuclear stopping and scattering cross section

A basic quantity is the nucleay stopping cross scetion, S,. However, since the
energy transfer in individual collisions can be quite large, the slowing-down by
nuclear collisions cannot always be considered as a nearly continuous process. It
is therefore important to know the differential eross section too. We she
sider various approximations, of which the first once len
simple mathematical treatment.

S.upposcl that there is a polential V(r) between the ion and the atom, such
that V(1) = (Z129¢2 a;bl/s %y, with Gs~a = 0.8853 qp 2713 (the munber 0.8853 -
(WaIB 2773 4 a tamiliar Thomas-Fermj constant). It is interesting thal then {he
lassical differential scaltering cross section may be obtained approximately from
an extrapelated perturbation procedure (Noles on Alomic Collisions 1), leading to
the sitdple resull

U1 here con-
ds itself to a particularly

R@" ; €N o
%M’; W (A doy, s>1, (2.6)
o g
Vo an encrgy lransfer 7 from the ion of encrgy I to an atoin at rest. Here 7 =Ty =
-2 45 g . H ; 1
I =AMy Mo (M + M) 7 I3, T, being the maximum cnergy transfer in ilie col-
lisions. Furthermore, the constant (' is connected to the stopping cross scciion S,

and is approximalely given by

af 259 S 8—1)\1/s : / 1 - o -
Cp =~ ([)? : (lqs o "’8‘;';”) T = (1 “;/ Sus (2.7)

where the collision diameler b is equal o
In the particular case of § = 1, i e
dives the

271252 Mov2, DMy = My Maf{My + D),
simple Coulemb interaction, equation (2.6) also
the stopping cross scetion, the conver
. S T N —
distant collisions.
R 1 L "~ .

As we shall demonstrate below, formulas of Lype of (2.6) are valuable Tor ex-
plorative purposcs, interesting values of s Leing 1, 3/2, 9,
£2.6) are furthermiore in accord with the
“ponding to the case of s -
standard stopping cross scel

gence of which is a result of adiabaticity in

3 and 4. The cross seclions
Thomas-Fermi scaling of units. Corre-
2, we shall sometimes approximate S, by constant
ion SY (similar {o that quoted by Borr (1948)),

Sh=(*12.7183) & gy 7, 7, My 27V (A AT

.77

Beside the simple pewer potential we

study the
rotential,

case provided by a serecened
U(r) = (Z1 Zse?r) - ¢ (r/ay, where ¢g is the

Fermi funetion, and further

W

correct Rullierford scallering, but in this case Sy in (2.7) does not represent
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mo 5203 | 28 —1/2 R o s . . .
o ==ag-0.8853 (Zy"° + Z5°) ol , which is & fair approximation to ithe ion-atem force,
Bowr (1948) has employed a similar poleniial, witly exp (—r/ag) in place of o (r/a):
) > 1Y B ¥ AR

however, an exponential funclion falis ofi. too rapidly at large distances.

A screened Coulomb potential, involviug ounly one screening parameter, ¢, leade
for dimensional reasons to a natural measure of range and energy, for an ion ¢
liding with atoms at rest. Tn fact, we may introduce, respectively,

O 3 3 2

M ) adMy
= BRNMy 4@ oo Y
o = RN {z 4ma Ty 4 M) and ¢ ;a_f*’Zl TR

as dimensionless measures of range and energy. Note thal e71 is essentially the
parameter £ used by Bomn (1948). The scatlering in ihe screened potential, U(r),
is obtained by means of the extrapolated perturbation meihod for classical scatlering

used in deriving (2.6), and one obtains a universal differential cross section

dt B
do = ma? 5 ]2y, (2.9

where 12 = e-gin (9/2) and & is the defleetion in centre of gravity system. When
elastic collisions ave assuwued, we find sin2(#/2) = (2/7,,), wheve 7" and T, arc the
energy lransfer and its maximum vahie, respectively, in a collision with an aton
at rest. The function (/2 is shown in IFig. 1. At high values of ¢ it approaches

the Rutherford-scattering. In IMig. 1 is also shown (2.6) for the case of § == 2,
It may be noted that the power Jaw (2.6) leads to f = fy, where

o phm

DO
|

1/2 - 5

[ (077 = 241 , 025,51, (2.67

In the above, we have at first considered approximale potentials representing the

ion-atom interaction anrd next, in an appreximative way, derived the scatlering

from the potentials, However, we shall in the following take a simmler and more

> o i

direct point of view. We consider (2.0) and (2.9) diveclly as approximations to the

true scatiering cross section and disregard (he counection to a corresponding po-

tential. This is the move justified, since the scallering is oniy quasi-clastic aud
cannot in detail be described by a polential between bwo heavy centres.

From (2.9) and Tig. T may be derived the nuclear stopping cross section, by

26 )
means of the formula (de/dg), = % T [{x) 1. The resull is shown in Tig. 2, together
<o
with the stopping from (2.6) for s = 2. Alse the electrenic stopping may be ex-
pressed in g —e units, and is then (de/do), = k-2, where the constant I varies
only slowly with Z; and Zs, and according to (2.5) is given by

~ 2112 172 372
. 0.0793 [1' /:2 (A]—f-:";,g) ~ 16 9 13
]\ = gc* T5i3 "";)73 B BYD! ]’:2 3 é:i'v = /;1 . (_,](«1)
—  (Z774 2y AT AY

Thus, I j and only in the exceptional case of Zy< < /0
can k become larger than unity. If Z) = Zo, Ay = A,, the constant & is given by

~1/2

. . g g 273
the shinple expression & = 0.133757 4

, 7L A representative case of electronice siop-

<
&
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Fig. 3. Universal range-cnergy plot for ¢ <1, cf. §2 and § 3. The curve Th.-F. gives 0,(e), i.e.
(2.2), as a function of e with negleel of electronic stopping. Curves for various values of the
constant & in eleeclronic slopping arc also shown. Dotted straight line is the standard range,

) o = 3.00 ¢.

ping, k = 0.15, is shown in Fig. 2. Formula (2.10) applies for v <vq, or approximately
<102 In the above we have for simplicily distinguishied between electronic ex-
citation and elastic nuclear collisions. This is not quite justified, since in close col-
lisions there is a strong coupling between the two, i. c. the nuclear collisions ave
not elastic. In first approximalion this nced hardly be taken into account; {he
reader is referred to Noles on Atomic Collisions IV for a more detailed treatnient
of quasi-elastic collisions.

The nuclear scaltering cross section is expecled to be fairly accurate, bhut while
shell effects sheuld be of little importance, a systematic overestimate may occur,
due to neglect of inclastic effects. A more thorough discussion is given in Notcs
on Atomic Collisions I. Al low energies nuclear stopping dominates over clectronic
stopping (2.5). It must be emphasized though, that at extremely low e-values,
e3 1072, the nuclear scallering and stopping becomes soﬁm be-
cause the Thomas-Iermi {reatment is a crude approximation when the jon and the
atom do mot come close to eacl olher.

o

Range-energy relations
By means of the simple formula (2.2), and the above stopping cross
sections, we are now able to estimate tolal jon ranges. Now, if we consider
nuclear slopping only, and one screening length @ in the scallering, the
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“"The continuation at higher e-vajues of the rauges g;(¢e) in Tig. 3, for various valucs of
stunt bodne eleeironic stopping. Straight dol-and-dash line is “hypothetical range without
nuclear stopping and & = 0.1,

o foo P00 foco

iiensional arguments leading to (2.8) apply, and in these units the range
i,

a funclion of ¢ only, i.e.

= ¢(e)

This formula holds
isintroduced in (2.2). The resuliing range,
Fig. 1 is shown by the solid curve in Fig. 8, for relalively small values of
( The particular approximation of s = 2, i. ¢. the constant standard stopping
uzn.\a section in (2.77) and Fig. 2 leads (o the straight line 0 =300 ¢ in
I"éiw' - This standard range is closely similar (o the 1 range formula used by
Soi (191(\) and also by NreLsen (1936). For small e-values the numerica
cwrve remains above the straight line and has &
vorresponding 1o the OHLWIR potent _w2,
fact of order o The detailed behaviour of the range curve can be
le\ understood fwm the stopping curves in Fig. 2. If we use the straight
Hne as a standard in Iig. 3, i. e.

both when (2.7) and when (2.9)
ased on (2.9) and [(1/2) from

downward curvalure,

the horizontal line as a standard in Fig. 2,
the range must at first he higher than the standard straight

line in Fig. 3.
Neat, since the aclual slopping rises ahove the horizo

ilal line, the range
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must drop considerably relative to the straight line, and actually fall helow
it. Finally, since the nuclear slopping becomes small in the high encrgy
region: with Rutherford scatlering, the range must again increase above the
straight linc as may be seen in Fig. 4.

In this description we have so far omitted clectronic stopping. This
omission is justified at low cnergies because Sg/S, tends to zero for small
velocities, but at higher energics it becomes less and less adequate until the
range finally is dominated by the electronic stopping, as may be judged
from the stopping cross section in Iig. 2. Let us therefore take electronic
stopping into account and wrile

de (de . :
CE_ (22} 4 el )
do dg),ﬁ ez, (2.11)

A

where (defdp)y is shown in Fig. 2, and the electronic stopping is assumed
to be proportional to /2, i. e. we are concerned with moderate velocilics,
v<vi. We choose a number ol representative values of the constant L,
L = 0.05, 0.1, 0.2 and 0.4. Values of & between 0.1 and 0.2 arve quite com-
mon, according to (2.5). In Figs. 3 and 4 aie shown the range curves for
the above four values of k. The most conspicuous cffects of electronic
stopping ave, firsl, that it leads to appreciable range corrections even at
quite low e-values. Second, for & large compared to unity, the reduction in
range always dominales, so that the range never increases above the straight
line g = 3.06 ¢, in contrast to the range with neglect of clectronic stopping.
In Fig. 4 is alse shown the hypothetical range p = (2/13eV2 which wonld
result il there were no uuclear stopping, in the case of k= 0.1.

By means of curves like those in IMigs. 3 mm—ig&)mpmw
or estimate ranges for all ions in all substances. But only for e-values below,
sayée = 10 arc curves for the various k-values fairly close together and

easy to compare. For Jight ions in heavy substances devialions starl at even
smaller e-values, because I becomes quite large. Moreover, only for these
low values are we able to cheek in a direet manner the nuclear stopping,
which here remains dominating. e
Although we may well use Fig. 4 for estimates of ranges when e>>10,
we can in this case introduce a more critical comparison between theory
and experiments. In faet, it is apparent from Fig. 2 that for high values of
e the range is mainly delermined by the electronic stopping

O

and only a
minor range correction is due to nuclear slopping which dominates at low
values of ¢. Since nuclear stopping drops off quickly while electronie stepping
increases, the nuclear slopping correction to the range remains fairly con-
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Another circumsiance may be noted in this connection. Since 4 tends
to a constant at high e-values, we may morcover usc (2.12), together with
Fig. 5, for comparisons with measurements at high_e-values, 1.e. v>>p;

where eleclronic stopping no longer increases “proportionally to v, but in.

slemqsos approximately as v lo a power beh\'eeg_:_lildi
Tn the present paragraph we do not malke comparisons with actual range
measurements, onc of the rcasons being that measured ranges require
corrections of the kind discussed in & 4. Instead, we have presented thesc
comparisons in § 5, where receni measurements are compiled. We do not
discuss critically the accuracy of the measurements; this is perhaps un-
satisfactory, because several new experimental methods have been applied.
We merely make approximate and obvious range corrections, corresponding
to the results in & 4. One resull emerging from § 5 is that the theoretical
nuclear stopping, as leading to the range curves in Figs. 3 and 4, for moderate
e-values appears 10 be in good agreement with observations, perhaps within
~20 percent. It should be noled that the Ulco};yis’/gnm-e%’v%&i—f}%@ﬁuj&«ql
quite low e-values, i.c. Eg10°% 7

Beside the general experimental checking of the present range-cnergy
relations there are several other ways of comparison. An immediate pos-
sibility is to measure directly stopping powers, which has been done in a
few cases, but mosltly when clecironic stopping dominates. We shall nol
enter more critically into these questions, since the theory of electronic
slopping is not the topic of the present paper. Nor will we attempt a detailed
discussion of individual inclaslic collisions belween encrgetic ions and atoms
at rest. Bul it may be mentioned that more subtle comparisons of ranges may
be made. For instance, isotope effects are quite informative, and can elucidate

both electronic and nuclear stopping, cf. §5.

Range straggling

The simple deseription used here, with a range along the particle path
based on (2.2), may now be extended to include an average square fluctuation
in range, given by (2.4). This description contains the assumption that range
fluctuations are relatively small. We may suppose that the fluctuations
around the average correspond necarly to a Gaussian. In fact, if this were
not so, the distribution in range would have a sizable skewness. Then we
would have to distinguish between e. g. the most probable and the average
range, and the simple relation (2.2) would have to be revised. Still, even
in such cases the resulls in the presenl paragraph may be useful. We can
in fact consider the present ranges, i.e. (2.2) as an approximation to the
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region (blectronic slopping has become quite dominating, and the absolute
value of “thesquare straggling, (40)?, does nol increase much beyond this
point. For high e-values it is then convenient to consider the absolute value
of the range straggling. The corresponding curves are given in Fig. 7, for
various values of k. We therefore conclude that accurate measurements of
straggling in range at high energies, where the cleclronic stopping does noi
at all correspond to (2.5), may give information aboul the predicted values
of k, as given by (2.10). '

50

The above treatment of simple ranges and range straggling is intended to be
fairly comprehensive, and from the accompanying curves it is easy to obtain rea-
wnable estimates of these quantities for any value of Zy, A1, Zy, Ay and p. How-
ever, we have disregarded completely those cases where the substance contains
several atomic elements, Zé‘l), 22‘2’, ete., in given ratios. In all such cases, the nuclear
stopping contribution from each clement may be derived from the solid curve in
Fig. 2, with a rescaling of units, The electronic stopping contributions are obtlained
rom (2.5) or (2.10). The resulting ranges can be derived by numerical integration.
However, considerable simplification oceurs in an energy region where, c. g. the
Jlopping cross section S®, due 10 any at@ﬁqﬁ_gqmyggﬁlt i, s proportional 16 the
TIEpoWer of L, because in this case straightforward computations of averages may

TmemAde. 10T Lwo components, « and b, we have IR — RaRy(Ryag + Ry (1 - a0))~1,
shere Rg and Ry are the ranges in a and b, and Tq and 1 -2, are the relative
«bundances of @ and . Similar procedures may be used in the case of straggling

norange. \ @\)}g{\\k

§ 3. Distribution in Range Measured Along the Path

In the present chapter we shall try to go one step beyond the treatment
82, where only a simple range slraggling was considered, and where i
“as lacitly assumed that straggling effects were small, We wish 1o check
vieovalidity of this picture and also {0 extend il. A basic reason for the
“vended treatment are the large fluctuations, known to resull from encounters
wwhween slow heavy ions and atoms. We therefore attempt to_study the proba-
Cdity distribution in range measured along the path. Although this distribution
> much simpler than the distribution_in space of {he endpoint of the path
s nol_easily oblamed. One might perhaps employ Monte Carlo methods®
+ the solution of representative cases, but we shall limit the treatment to
“pical and simple approximations, and in particular consider the power jaw
Hlering eross sections given by (2.6). '
Consider again a particle (Z;, A}) with caergy E, in a medium (Zy, 4y).
* Monte Carlo niethods were applied by e.g. Ronixsox, HoLyes and OEN (1962) to various
s ol nuclear scattering, but with neglect of electronic stopping, el. also Horsps (1962).
et Fys Medd. Dan. Vid. Sclsk, 23, o, 14, 2
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We denote by R the range measured along the par ticle path, i. e. the total
distance traversed by the particle. Let p (R, I£)dR vepresent the probability
that the particle has a range between R and I+ dR, so that

gp(E, RydR=1 and <R"> = Qp( R)R™dR

Jo o

An integral equation for p (£, R) may be dcri\'cd as follows. Suppose thal
the particle with encrgy F£ moves a path length R in a medium conlaining
N atoms per unit volume. There is then a probabilily NéRda,, , for a col-

lision specified by energy transfer >'T, to electrons (electrons labelled
i
by suffix 7) and by an encrgy transfer Ty to translational motion of the
. . N Al Al ! al
struck atom. The particle will thus have an energy I£ - T, ~ > Ty I the col-
' i

lision lakes place, the particle has a prebability p(R-0R, I7~ Sjjm)

of obtaining the total range R. Multiplying by the probability of Lol‘mon

NOoRdop,., we get the contribution from this specified collision to the tolal .

probability for range R. We next sum over all ¢ollisions. There is left a
probability 1 - N (3]’\(10n . that no (olhsmn occurs. In this event we clearly

get a contribution (1 - N oR\ Gy, ) p(R=6R1, ) to the lolal probability for
the range R:
Collecting the above contributions we have an allernalive expression
for p(R, ),
p (R, E)=No R% Aoy p(R-O0R E=1,-2>Ty)
v i
+(1 - z\’c‘zRR da, ) p(R—-0R, ),

and in the limit of R — 0,

ap(R,E) 7 :
Bm?, 2 =N \dow {]) (R,E-T, ,,_; T,)-p (R, 1«,)}-, (3.1)

which expression constitutes the basic integral equation governing the pro-
bability distribution in range aleng o the path. In the remainder of this chap-
ter we study the integral equation (3.1) and ils consequences, using a num-
ber of approximations. We shall not further elaborate on the derivation of
(3.1), but it may be noted that the formal limit of R — 0 corresponds Lo
sopambxlm between consecutive collisions. If there is no separabilily, ihe
equation still holds, or may be ‘easily amended, as long as collisions with
moderate or large 7T-values remain separable.

~ - -

3



ih, 1. ¢ the Loy
1 the probahilin
fiad

Suppose thy
edium conlainin,
Y ‘O o)
Rdo, , Tor a cul
Jectrons Jabelled

al molion of {he
:}_ ’]‘fi . }[‘ ”l{‘ (‘né
i -
LT, _i T
i
ity of collision,
Histonr lo the toly
There is left o
evenl we clearh

L oprobability o

mlive expression

)

sverning the pro
der of this cher
es, using aonu
the derivation <
B corresponds
~eparabilinv, ©

s collistons v

Nr. 14 19

Besides separabilily we have assumed Lhat successive collisions are not ('oruhfod
This holds if the atoms in the substance are in facl randomly distributed, or if c.
impact parameters corresponding to sizable defleclions are extremely small com—
pared to interatomic distances, giving effeclively uncorrelated events., A system
where collisions are scparated and uncerrelated may be termed a random system
of atoms. The derivation of (3.1) is based on a random system, and we limit our
treatment to this case. A solid with periodic lattice is for many purposes a random
system, but at low jon encrgics deviations from (3.1) can occur. These deviations
contain directional effects and are sensitive to laltice structure, cf. p. 32,

On the assumption thal energy losses to electrons are small and sepa-
raled from nuclear collisions, we oblain

Ip(R,I5) ,(‘; f
BN ~1\l do‘nl

pPRE-T)—p(R, E)}
; (3.2)
- 1\780 ([1‘) a‘j}, P (R, ]‘}‘) 5

which formula is somewhat less general, but ap‘)hcablo to our previous
cross scetions for scallering.

We may rewrite (3.2) on the assumplion that the Thomas-Fermi-like
seallering formula (2.9) applies (note that this also includes (2.6) and (2.6")),
and then introduce the variables ¢ and e. We readily obtain

a &2 1[ )
3 7@ =3 {7 e 11 0. 0)
do 9 (3l (
| ' (3.9)
_[(4e) @ 110, ¢
do/,0e " 7
where 11(g, e)do is the probability that a particle with energy parameter ¢
has a range between ¢ and g+ dp, and where y =41 Mz/(M + M2, We
have seen that 111 a wide region (v <wy, i. ¢. roughly £ <10%), one may write
(defdo), = k€. In cqualion (3.3) we then have two parameters, k and y.

A ﬁimp ¢_approach to the study of the integral equations (3.1), (3 9) or
e e
(3.3) is id obtain from these equations the moments < R™ >, \\hLle)

le M]LBM]} le—the probability dislvibution itsell _may be determined too
‘rom (3.1) we oblain directly, when multiplying by R and integrating
by pars : '

m<R" Y (E)> -
' - 5.4
N\ Aoy {10 () = < (-1, = Sy >}, (34)
¢ i

2
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Similarly, i’ (3.3) holds we arrive al a somewhat simpler relation
1 & yl
. ~1 1/2
m<p" " (g) > ( le/zf(!/){<gm(s)>-—<g (e~;) }
de o
J — — ¢ &
(d@) ({e (e) =
By means of equations (3.4) or (3.5) we may successively derive the firsy,

sccond, ete., moments of the range. In the resulting formulas the equalions
(3.4) are applied, because they have a wider applicability. In actual evaly-

\

(8.5)

ations, however, we turn to (3.5), and to the analogous reformulations of

(3.6) to (3.13) in ¢—e¢ variables, although the reformulalions are nol cx.
plicilly stated. Let us ask for the average range R(E) = <R(E)>. Ac-
cording to (3.4)

1= NS(IUn 6{1?(15) “R(E - T, —ZTW.)}. (3.6)

i
An obvious procedure in.solving (3.6) is to make a series development in
powers of T = T,+ > T,. This approximalion might secm poor when
i

My~M,, because I'~T can then take on any value between E and 0.
However, we can profit from the circumstance that the encrgy lransfer to

clectrons, >'7T,;, is normally quile small, and that the nuclear scaltering
’L

cross scctions (2.9) are strongly forward peaked, since f(M%)173/% decreasces
approximalely as { to a power between -1 and —2. We shall prescntly
look into the accuracy of the various approximations.

Take at first only the first order terms in the brackels and denote the
corresponding approximalion to average range by 1 (12). We obtain from (3.6)

Ry (E) 1 Y aE i
iz T NSy a0 \0 NS (1) (8.7)

where S(I5) = S, (£) +S,(E) is the total stopping cross section. The formula
(3.7) is exactly the straightforward equation (2.2) used in § 2.
Similarly, we can include higher order terms from (3.6),
1 d?

1= NS(I7) ?( )7»5‘\799(15 —(-@7,]1([5)-&»...., (3.8)

clude only the sccond 01(101 term we obtain a second order diffevential

.

,
wi
als

ihi:
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an o relition cwtion which may be solved directly. Still, since (he second order term
TR v be considered small, we may express the sccond derivalive by means
o ‘o i “ 1. This leads to Ry(F), the sccond approximation to average range
« ! i )
i . T dE Q2() d | 1
| Ry (E) = & INTR ) ~( ~~——;\]. (3.9)
| Jo NS (£ 2 aE\s(m))f
sively derive o Phe average square fluctuation in range, ARA(E) = {Q(E)—I?Z(Ez, is
crontlas the e cined from the second moment in (3.4), if we mulliply (3.6) by 2R(F)

IV I oot 2 subtract

s reforiogt e

{ daﬁ,c{d R (B) AR (5T, S '1'%')} -
v 1

melation. i

H I ) R (3.10)
g da,l’e{]{ (E)-R(E- -2, Tm.)I :
l ' '
e . —_—
o this cquation the right hand side is a known source lterm. If we take
e e ~mie successive steps as in the computation of g, we make a series
RER I SN S EER AR : . rm 3
B ey g clopmentin (3.10), in powers of 7. The first terms on both sides of the
! dion lead to the approximation (4R?),,
[EERE ST !
A T AL S S(E (£ (A_]_{Z.) ;;_QZ(E)(.E»]”{(E))Z (3.11)
Cotn sy o : dr > ! \dl )’ '
Fod e T . o for R(E) we should use the firs] approximation, R (). Thercfore,
Wl «3.11) brings us back exaclly to our previous assumplions in § 2, in
_ wse o (2.4).
3 elading terms in (3.10) up to second order, we gel
AR 4
d — Q2 (E) (!2 TS
S(E) o (AR?) - 22 2 Ty
) G (M) =577 o (AT
y , _ ‘ , . (3.12)
K s)zozﬁfé@)_ d(d gV
| (dE ) 2 dE\dE )

K(Ey - K([aﬁ’e'lﬁ. When assuming the new terms in (3.12) to be
.

“e ooblain the second approximation to (AR?),

d — 022 (E) K 50%dS 1 d?)
kY :!1 ])2 9 = A i N T T T TR T e . 5 . ]
ar: (A1) SS(E)Nz{ ' (!2‘28 QSZ)dE F2S dE | (3.13)
anof the (*xp'rossion (3.13) we dre able to estimate the aceuracy of
Cahtforward formulas (3.11) and (2.4). It is Important to notice that
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TasLe 1
Comparison of first and sccond approximation of expansion in y, for power law
scaltering. Results for average range and range straggling.

s R,/R, (AR, (AR,
B/2 1-+9/24 14-9-0.10
S 1 14 9/6
B 1--9/15 14-9-0.14

the successive approximations made above are simply series expansions of
average range and slraggling to successive powers of y = T,/E.

It is of interest to compare the above approximations. For simplicity let -
us consider low energies and disregard clectronic stopping. Since clectronic
stopping here tends to diminish fluctuation effects, we obtain in this way
slightly exaggerated differences between successive range approximations.-
Morecover, we use power law scaltering cross scctions (2.6) or (2.6"). This
permils exact computation of R(E). Note that according to (2.6) the ranges
arc_proportional to E*®, while the square straggling in range behaves as
EYS.We may compare Ry, Ry and R, and similarly (AR2);, (AR?%), and
ARZ. The results depend on p, i.e. on the mass ratio. For small values of
y, a scries development in powers of y is accurate. Since y is often close to
its maximum value, y = 1, we also compare the approximations in this
case. The resulls are listed in Table 1 (y<<1) and Table 2 (y = 1), in the
cases s = 3/2, 2 and 3. Nofice that at low energies values of s belween 2
and 3 arc of parlicular inlerest,

In the approximalion used in Table 1 the range R, and its fluctuation

Jon uscd.
(A R2), are equal to the exacl average values R and 412, respectively. From-
Tables 1 and 2 it ismﬂ'mi Ry (F) is always a very good approximation
to R(E), and one need not distinguish between the two. The range Ri(I2)
is somewhat less accurate, but deviates from R(F) by no more than 10 per-
cent in the least favourable case (p = 1). In aclual range observations the
deviation is reduced by electronic stopping and by the change in cffective

s with particle energy. There remains a difference between Ry and R only

at the lowest values of . For our present purposes where all range curves
(e. g. Figs. 3 and 4) are stated in terms of R, (F) we need hardly distinguish
between I3 (F) and R(E), because of obvious uncertainties in theory and
experiment. Still, one might ask why the range_curves are computed for
Ry in place of R,.7This is simply because a universal range curve would not
vesult when Rs is used. -

———— -
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TaprLe 2
¢omparison ol first and second approximation with exact formula when p =1,
Average ranges and range straggling for power law scaliering.

S fu!‘ 1'1‘7':\ [3H

s R/R, R/R, (AR (AR, (AR /(A RS,

e 1.053 1.01 1.03 0.94

1.20 1.03
1.26 1.10

O
~I!

e 0.901 0.

The straggling approximations (AR%); and (4 R%), are, as a rule, a liltle
malier than 4R2 when y = 1. This devialion becones quite pronounced

;o . . . . 2% :

ok it instead we consider the relative straggling in range. Thus, in the extreme

. Ty 32 . o
‘ cases of 5= 3 and y = 1 we have (AR2)/R? - 0.133 according lo (2.13),
Ninee eleetno

: A2~ \ . - < 3 N R 5
S while ARFER > 0.20 for y = 1 and 2<s<3. Al quite low values of ¢, and
Aot bon

4 ' ¢ 1, the straggling in Tlig. 6 is therefore somewhat lower ihan the straggling
A_})}v;wx!E‘,n»?‘

neaverage raunge; still it is noleworthy thal the electronic stopping has a
(N . . . . -
considerable influence on straggling also for quite Jow values of e. We infer
moreover that the absolute values of range strageling in Fig, 7 are evpected
. N s . —— o Pl e
[ESTENE RTON S PR ) n 5 . P < N U e
S o represent AR® quite accurately, 1. e. they are superior to the relative
: straggling values in g, 6. Note that the deviations are only jm borlant when
Pate te oo e ML
: ‘ »~ 1. The outcome of the discussion in the present chapter is therefore that
[RSETS R A - )

_—

. , tesimple quantities By and (AR%);, introduced already in § 2
[EATTARERET R E )

T

Uy the

2, are salis-
. rictory estimates of average range and average square fluc

cluation in range.
Tlesults for power law scotfering

r Lo the interesting case of power law scattering, (2.6), the formula (3.3) tukes
L, cparticularly simple form if electronie stopping is neglected
S b : ’

. In fact, we then eblain

J ‘ (Iy iy e , X 9 1o,
e e P - So"y"fﬁ??{” S S P [yl s, e (1)) - P (e Y, (3.13)

ey, equation (3.13) permitls us to choose £(r, ) independent of ¢, and an cx-
~omely simple recursion formula is obtained for the moments of the distribution,

) ¢ 5/ w N
G gt e = Jgo-(29628)-1 and \0 P(r, e)dr = 1. If the power law holds down lo zoro

1
: . . dy .
el e g ] (), I(y, 1, 8) = K {I - (i yy)-’«m/s} e (B0
AN yl +1/8
“moments therefore only depend on one parameter, 3, for any give

i
orino
cring.

nopower law

This result, where virtually the whole range distribution

is determined im-
Sutely for any cnergy when merely the

power s is stated (and y is known), is
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clearly a direcl consequence of universal cross sections, f(#1/2). In a more qualitative
sensce, it is apparent that if at one particle energy a cross section is given as a functioy
of T/Ty = sin29/2, this cross scction leads to a cerlain ion-atom potential from
which the scallering at all lower energics may be derived. This circumstance ig
expressed in an approximate way by the unified cross scetion, (2.9), and the results
happen to be analytically simple for a power law cross section.

The integral I(y,m,s) may be expressed by means of the incomplete bety
function (cf. Erpiryy et al. (1953)),

) 1 2m
I(y,m,s) = —s{1—(1—yp)2m/sy 4 2myls B, (1 o —;-»), (3.15)

and is partlicularly simple when y < < 1, in which case a power series in ¢ converges
rapidly,

‘.Zmyll y s—1

I(y,m,s) = P ] 5 9s 1 (2m-—s)
(3.10)
2 51
%1;2 351 2m=-sy(m—sy+..... }, y<<l1.

An interesting casc is also y = 1, where the incomplele beta funclion in (3.15) be-
comes the usual beta function Byi(p, q) = I'(p) () I'(p +q).

The resulls in (3.14), (3.15) and (3.16) were used in Tables 1 and 2 for the com-
putatlion of the first and second moments in various approximations. It is easy to
derive also higher moments. ’

§ 4. Projected Ranges and Associated Quantities
Average projected range
An interesling quantity appears to be the projeclion of the range on the
initial dircetion of the pavticle path. This quantity is often observed directly.
Thus, one might be concerned with a collimated beam of parlicles passing
through a number of foils perpendicular to the direction of the beam; the

S

number of particles collected in each foil gives just the distribution in range

projected on the initial direction of the beam. We may, in fact, define the

concept of projected range as follows. A parlicle starts inside an infinile
homogeneous medium from the origin in the direction of the x-axis; the
value of @ for thc__(ﬂ,}_ﬂointofih__ﬂ__e_wme projected range, R,. The
distribution in a:is the distribution in projected range. Quantities of particular
interest here are the average projected range, 1—1’7) = I?p(E), and the average

e 2 _ P2
straggling in projected range, AR, = R —I,.

in
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An integral equation for the average projected range may be obtained
in analogy to the derivation of (3.1). We find readily

1= A’Sdaw{ffp (E) =R, (E~T)cos ¢}, (4.1)

where T = T,+>'T,, and ¢ is the defleclion of the ion in the laboratory
i

system. There is a close similarily to the integral equation (3.6) for the
average range, the only difference being the factor cos @ in (4.1).

Let us consider some approximations which can be useful in solving
(4.1). If always T'<s<E, i.e. y<<1, or if R, is nearly proportional to E,
we may wrile

P Rp1 (I
1 =R, (F) NRdGn’Q(I —Cos @) +(~14j5’1—<~]j~) Ngdcrn, e Trecosgp.  (4.2)

This approximation is similar to the one for R, in (8.7) and (2.2), and we
therefore use the notation R,y for the projected range in (4.2). Actually, if
the deflection ¢ may be neglected, we obtain (dl?pl/a’E) =N-S, 1. e. I_%pl
becomes equal to I,

When solving (4.2) we can introduce the familiar transport mean free

path, 7, and a transporl stopping cross scction, Sirs

% = N(dan’c(l —cos @), S, = ((lo‘ﬁle Tcos . (4.3)
it ‘ ¢

With this notation, equ. (4.2) becomes

1= I‘_’pl (;732 I fﬂ?pl ()

NS, (] . 4.4
;~tr (E) dr \Si) ( )’ (4 1)
which equation (4.4) has the solution
» ”
P f g” " -
Ry () =\ o —mmexpi\ oo 4.
271( ) t\o 1\78“, (]f/) C\I) l, N ;,”4(EH) l,\\r_ St‘)' (E//) > ( J)

and this result should be a good approximation to R,(E) if y is small, or
il R, is nearly proportional to energy. We may solve the equation for R,
in the lowest approximation. This corresponds to taking the leading term
in a scries developnient in g = My[M;, assuming g to be small. The ap-
proximation is similar to that in § 3, for y<<1.In the limit of small x, the
angle ¢ is always small and we need only include ¢*terms in (4.3). Using
Mab.Fys.Medd Dan.Vid.Selsk. 83, no. 14, ( 3
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Fig. 10. Sketeh ilustrating definition of 1,

The integral equations for R2
following two equations are

2By () = N\do, (T8 (1)~ T2 (1 - 7)),

oR, (1) - NSQI%C{EE(E) ~(1 ~§sinz go)E;Zi(E— T)},
where

— _ 1

R= 4T and 72 - T 172

The two equations (4.8) and (4.9 m
is found from (4.10).

First order solutions of (4.
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yarately, and then pr

, can be obtained in
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the results for p =1

R2 js of order of AR

TaBLE 3
Straggling in projected range for power law scatiering and p =1,

OO
) s Y 2 3
.................. 1.25 1.33 1.38
o 0.204 0.275 0.341

§5. Comparison with Experiments

As an illustration of the conneciion to experiments, we present a brief
survey of recent experimental resulls, interpreted on the lines of the theory
ol this paper. Before that, it may be worth-while to summarize briefly and
commuent on the salient features of this theory,

A primary result is that a simple-minded theory of ranges and their
fluctuations, as described in § 2, is quite accurate and that correcltions of
various kinds for projected ranges, ete., may be made without much dif-
ficulty, if necessary. A second result, somewhat independently of the delails
of the theory of collisions, is that a 0—e¢ plotis usclul for a study of ranges
of particles with ¢ <1000, and particularly for 310, A third result is that
for amy jon of high energy a range corrcction, 4, for the cflect of nuclear
stopping has been obiained, which permils a more accurate study of elec-
tronic stopping. Fourth, c. g varicus isolope effecis can serve fo check
scveral details of the theory, as may also observations of range siraggling,

A theorelical result of special inlerest is that for Zy = Zy the clecironic
stopping constant is k~0.15, excepl when Z) = 1. Thercfore, the range
energy curve for Z; = Z, should be closely a single curve in a 0 —¢ plot.
However, the corrections for e, g. projected ranges are not negligible in
this case.

The numerical results computed here are based on a much simplified
model of collisions. It is certainly possible to introduce a more detailed
deseription of the collisions (cf. Notes on Atomic Collisions 1 and IV), and
thereby improve on the present theoretical resulis, However, it may be more
important to remove uncertainties and to correct misconceptions in the theory
by measurements of range and stopping.

Another important circumsiance is that divect comparisens with mcasured
ranges may be made preferably in gases, where successive collisions arve
uncorrclated. In several vespecls stopping in solids may- also answer the
purpose, but experiments at low jon energies clearly seem to indieate the
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on the figures, and range corrections are indicated by arrows. In some cases
our knowledge of the measurements was too scanty to permil a range cor-
rection. As a general rule, we have corrected for projected ranges, ete., only
if the correction exceeds ~10 percent.

Fig. 11 shows the-theorelical range curve for values of ¢ smaller than 2,
where nuclear stopping is quite dominating. The ranges for pure nuclear
stopping are given by the upper solid curve, denoted as Th.-I. on the figure.
A curve for excepltionally large cleclronic stopping, i.e. k= 0.4, is also
shown. The actual Ek-values are quite small, and thus the expected ranges
should be close to the Th.-I. curve. Further, note the dashed straight line
corresponding to range proportional to energy, ¢ = 3.06¢. 1t should be
emphasized that for extremely low energies, £5 1072, the theorelical curve
is not loo well-defined.

Hanvey, Wapr and Doxovax (1960) observed projected ranges for
A% and A*"7 jons in bismuth. The At recoil ions were produced by a-hom-

bardment of a bismulth foil, Jeading to an (e, xn) process. This resulted in

At ions with various energies between 400 and 900 keV; the cenergles were
not sharply defined. Approximate corl'mm range are shown
by arrows in Fig. 11. The obscrvations of Harvey, Wape and Doxovax
are in salisfactory accord with the predicled ranges.

Powers and Wisring (1962) studied projected ranges of monoenergetic
ions of nitrogen and inert gases in several solids. The depth of penetvation
of the ions was obtained from a subsequent analysis of the distribution in
angle and encrgy loss of protons scaltered from the jons imbedded in the
target. The ranges of Powers and WhaniNe are generally in good agreement
with the theoretical curves. In the figure, we have included only their range
measurements for Ne in Be and in Al The corrections for projected ranges
are quite small and are omilted. The ranges in Al may be compared with
those of Davirs et al.in Fig. 12. These two range observations for Nein Al give
quite different resulls and are placed on either side of the theorelical curve.

Varyvoesig (1959) made accurate observalions of raunges of Ra?* and
Th?% recoil atoms with, yespeetively, 97 and 725 keV energies. Ranges are
measured in gases using the clectrostatic collection technique of Gmionso
and SikkELaxp. Ranges and range stragglings were observed in deuterium,
lLiclium, nitrogen and argon, and in hydrogen and neon (only for Ra jons).
The observations are shown in Fig. 11. They are in good agreement with
theory (between 0 and 20 percent below theoretical ranges), and correspond
to k= 0.12, except in hvdrogen where k= 0.16.
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Fig. 12. As Fig. 11; measurcments of median ranges by Davies et al.in Al Ranges at low energics
excced theoretical curves, probably as an effect of tunnelling in crystal lattice.

A few measurements by the Copenhagen group (Stpenius, privale com-
munication) are also included in Fig. 11, The projected range of Au™ jons
of energy 50 keV is measured by clectrostalic colieetion. The correction for
projecied range is negligible. The ranges arce slighlly above theoretical curves.
The L-values are as in VarLyocsik's measureiients.

Davies el al. (1960, 1961 and private communication) have observed
projected ranges in Al, for the following ions: Na2l, A%, K%, RbLS, X!
and Cs'37. Monocnergetic radioaclive ions of encrgies between 1 keV and
9 MeV enter a polished Al surface. Thin layers of Al ave removed suc-
cessively by electro-chemical means and the residual activity is measured.
In this way the distribution in projected range is obtained, The range values
of Davirs cf al. in Fig. 12 are median ranges. At the higher encrgies there
is good agreement with theoretical curves.

The measurements by Davies el al. were made with polycrystailine Al
It has turned out that the structure of Al is such thet tunnelling of the ions
may occur, whereby the average range beconies considerably larger than
for a random system, and the range distribution has an exponential lail
(Pierey et al. (1963)). The results of Prznrey et al. for Kr® in Al and Al Os
at 40 keV are compared with theorelical estimates in Table 4. There is
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TapLE 4
Ranges (in gg/em?) of 40 keV Kre in Al and Al,O,, and average square straggling in
range. Experimental results by Pmrcy et al. Computed results (columns 3 and 5)
are for random system, as indicated. :

med 2] e 2 N2
chp Rea;p I‘r(md (A R)e:op (A I‘)mnd
Al oo 9.0 11.5 7.1 91 4.6
Al Og.vvvieeeennns 7.7 7.7 6.5 7.8 3.5

satisfactory agreement in the amorphous substance AlzOs, both as regards
ranges and straggling. It appears also from Table 4 that the experimental
median range in Fig. 12 is probably somewhat larger than the average ranges

of a random
Davies el al.

system of Al atoms. We therefore infer that the results of
in Fig. 12 arc not in contradiction to the theorclical ranges

of a random system. Note the very large experimental range straggling in
Table 4 for Al, characteristic of an exponential distribution, where AR? =12

There are several other mecasurcments in the regions of energy cor-
responding to Figs. 11 and 19. Thus, Bavnen and Duxcax (1957) obtain
ranges of e-recoils (¢ 0.1) from 0 to 10 pereent below theoretical curves.
The results of vax Lixt et al. (1961) are at {he higher energies at least about
o factor of 2 above theoretical expectations, while at lower energies (e~0.04)
agreement is fair. However, these measurements show a very considerable
scatter. Guseva, Inopix and Tsvrko (1959) measured ranges of mono-
encrgetic Si* dons in Ta and Cu backings, at energies between 10 and

25 keV. The
neeessary for
Their results

depth of penelration was estimated from proton energies
a (p, y) process, together with knowledge of proton stopping.
are aboul a faclor of 2 above the theoretical curves.

Fig. 13 shows some observalions for 1<e<100, and corresponds 1o
Fig. 4 in § 2. We arc here in a region where the clectronic stopping begins
to take over. It is then important to know the value of the constant k. Some
of the projected ranges observed by Powrrs and WiarLine (1962) arve shown
in Fig. 13, including one wheve the ratio g = (My/M;)~2, 1. c. the corrections
for projected range are large. The agreement with theorelical curves is good.

WinsnERG and Anexanxper (1961) and ALEXANDER and Stssox (1962)
measured projected ranges for TH® jons in aluminium, at energies be-
(ween 4 and 30 MeV, and for At and Po jons in aluminium and gold, at
cnergies between 3.5 and 13 MeV. The projected ranges and the range

s

slragelings were obtained from the aclivities in stacks of catcher foils. In

fale]

Fig. 13 we have included resulls for At and Po in gold and for TH™ in
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Fig. 13. Comparison with range measurements in the region 1 < <100, where elec >tronic stopping /
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: to compare the ol servations. nuclear st
aluminium. There is good agreement with the theorelical curves. It may be and A°
noted that the ions were formed in a nuclear reaction with subsequent measure
neutron evaporation. ween i
In the case of A4l in aluminium, Davies et al. (private communication) As
performed measurements at energies so high that electronic stopping is im- svslenns
portant. The ranges are in good agreement with the theorelical curves in Bigh v
Iiig. 13. ments,
Brypr, Lassuex and Poursex (1962) measured projected ranges [or clectio
radioactive Ga% recoil ions in gases using electrostatic collection. As typical rane
representatives of their observations we have in Fig. 13 included ranges in stoppin
hydrogen and deuterium. These ranges are about 40 percent above theorelical values
ranges. Brypr, Lassex and Poursex also observed projected ranges for curve i
Ga% in co pper; the latler ranges are in good agreement with the theoretical of
curve. Also included in Fig. 13 are three measurements by Posranzrr (19651 (1961
of 1-3 MeV Ne?? jons in aluminium; these ranges arc smaller thon foil o
theoretical ranges. Finally, in Fig. 13 is shown the early mcasurcm ‘nl\ therni!

of ranges by Leacimvax and Arreruine (1957), where recoil ions of ALY by roddi
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Fig. 14. Comparison belween theorctical curve and range measurements for fission fragments,
nuclear stopping being eliminated. For large values of e the representation shown here is superior
to that in Fig. 13.

.
and At?9°

penelraled a stack of aluminium foils, and projected ranges were
measurcd. There is fair agreement, but apparently some fluctuations be-
tween individual measurceioents.

As mentioned previously, in the present paper we do not allempl a
systemalic study of electronic stopping as oblained from measurements at
high values of ¢. We may merely show two sets of representative measure-
ments, where the nuclear stopping is climinated, so that the extrapolated
cleetronic range is obtained. For v<wv; the theoretical extrapolated clectronic
range is g, = 2&Y%[k. Using 1theovetical range corrections for nuclear
slopping, A(k, €), as indicated in Fig. 5, we have plotted in Figs. 14 and 15
values of (£/2) {Q + Ak, e)} obtained from measurements of p. The theoretical
curve is the straight line kg2 = &%, Fig. 14 conlains only measurcments
of ranges of fission fragments. In Fig. 14 is shown measurements by Nipay
(1961) of fission fragment ranges in uranium. Nipay used a thick uranium
foil packed in aluminium calcher foils. Fission fragments resulted from
thermal neutrons. The fragments ending up in aluminium were separated
by radiochemical means. In this way an eslimate of the ranges along the
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Fig. 15. Some recent measurements of projected ranges for light atoms in gascs, corrected for

nuclear stopping only, like in Fig. 14. Full-drawn curve ig theoretical range gV, Points stand

for following ions in air: *LL 4B, AC, 4 O, OF, riNe, OXNa, and following ions in ardgon: 1,

VB, ¥ N (measurements by TErLova ct al.). Further, Oindicates IF in nitrogen, measured by
Brypr, Lassey and Poursex.

chord was obtained. The ranges of Ninay should be corrected by approx-
imalely +5 percent in order to obtain true ranges. The agrecment with the
theoretical range is good.

In Tig. 14 is also included observalions on fission fragment ranges by
ALEXANDER and Gazprxg (1960), Furyer (1957) and Lescnyax and Scurr
(1954). In the case of gold, about 5 percent should be added in order to
obtain true ranges. There is agreement within ~10 percent.

A number of other authors have measured ranges of fission fragments
(Sxrru and I LTANK (1959), Karcorr, Misker and StanpLiy (1948), Goop
and Worrax (1956), BocoiLn, Anroe and SIGURGEIRSSON (1947), Dovrerrr
and TevpLETON (1954), Svzor (1949), Porrr and SUGARILAN (1957), cf.
also the review article by Hanvey (1960)). Some of the earlier measurenients
may be less accurate than {hose shown in Iig. 14, but generally there is
approximate agreemenl with theory.
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As an cxample of light ions with substantial energies we have taken
measurements of projected ranges by Trrrova et al. (1962). A number of
ions, from Li to Na, with encrgics in the interval 1-10 MeV, were slowed
down in air, argon and hydrogen. Many of these measurements are shown
in Fig. 15. On the figure is also shown a range value for F*® in nitrogen gas,
measured by Brypr, Lassen and PouLsen (1962). We have not indicated
corrections for projected ranges on Fig. 15, since the largest correction would
be ~+8 percent (for Li in argon gas).

In connection with eleclronic stopping it should be noted that at low
atomic numbers, and particularly at low values of Z;, there may be de-
viations from the theorctical k-valuc based on a Thomas-Fermi freatment.
At low atomic numbers one may expect varialions in the measured k-values
due to shell effects. As an exiveme cxample from a Thomas-Fermi point of
view, in the case of Li jons in hydrogen, deuterium and helium, it appears
from measurements of stopping (Arvisox and Lirriesonn (1957)) and of
ranges (Crenre, WArrLer and Berrinorp (1961)) that the electronic stopping
may be as much as 2-3 times less than given by (2.5). Measurements by
Orainop and Duckwonrtn (1963) of eleclrgnic stopping in carbon for all ions
with Z; £11 indicate minor shell variations around the value in (2.5).

Range straggling
As to straggling in range (c¢f. p. 14) we have not altempted any closer
analysis. High accuracy is difficult to oblain in range straggling, and al low
e-values (e<0.5) the rule-of-thumb (do/p)? = y/6 = 11[1le(11[1 MR (203
is of!cn sulfcmnl In mdn) experinients i tuad]

iwas

pound nucleus aft(*lﬂg_c_ggpu %11()11 The experimental range stragglings
are Wl above the curves. The measurements by Vavrvocsix
on 97 keV @-recoils (cf. TTarveY (1960)) correspond to rather well-defined
conditions. FFor 97 keV Ra the straggling in nilrogen, ncon and argen Is
comparable with the theoretical onc (cf. Tig. 6), but in the light gases,
hydrogen, deuterium and helium, the straggling is much in excess of theo-
relical estimates. When sublracting a common constant of order of 0.016
frolm the experimental straggling (4 Q)?mp’ one obtains a relative straggling

(Ao/p)?~0.14-0.18, in excellent agreement with theory (since e~ 0.03-0.07,
and £220.12). For 725 keV Th ions, where e~0.4-0.5, the experimental
relative straggling is much too large in deuterium and helinm. A reduclion
ol (v I”)Lw by~ 0.04 in all gases would give a reasonable order of magnitude

of the straggling. As a further example, many meastrements by the Copen-
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hagen group show rather large straggling ceffects, but some resulls (e. g
ranges of 50 keV Ga® in hydrogen, helium, nitrogen and argon, shown in
Fig. 11) with e~ 0.3-0.5, have a slraggling (dgfo)? y™ 1~ 0.15-0.25. Even in
the difficult case of the lightest gases, where the theoretical straggling is
extremely small, there is reasonable accord with theory.

Isotope effects

It is of interest to study isolope effects in range measurements. We shal
treat the question of different isotopes used as stopping medium®. Although
clectronic stopping may dominate in the value of the range ilself, isotope
effects can still give direct information about the nuclear slopping. An in-
structive example is provided by the measurements of Brype, Lassex and
Poursex (1962, and privale communication). They observed ranges of Ga%
in hydrogen and deuterium; at high energies R), is slightly larger than R,
while at Jow energies Ity exceeds Rp. Now, if there was only electronic
stopping, the two ranges would be equal, so that differences are due (o
nuclear stopping. It is seen from (2.7) that the nuclear stopping behaves
as S, My 2, when M;>>M,. At quite Jow encrgics, wheve the ion cannot
pencirate deeply into the alom, the eflective power of the polential is of
order of s =3, and thus S,;,>S,,. At high encrgies, where the screening
Is weak, the effective power approaches s =1, and therefore Sun > Sup
(Loxpuasrp and Scianrr (1961)). According to Fig. 2, the change-over in
stopping occurs al an e-value smaller than 0.5, Correspondingly, in Iig. 4
the change-over in slope-—from lower to higher than that of lhe straight
dashed line—occurs at e~1 for the Th.-I%. curve.

Instead of this qualilative explanation of experimental resulls we may
dircclly compare experimental range differences with theorctical ones de-
duced from Figs. 8 and 4. The results are shown in Table 5. Agreement
between theoretical and experimental range differences is quite good,

Tanri 5
Difiercnces between ranges in D, and I1, for Ga® jons. Ranges are in mm at 300° KX,
760 mm Hg.

Energy (keV) 1190 790 610 50
(Rp=RiDth-venennn.. 0.9 0.7 0.6 —0.05
Ep=Riderp «ivvnnn. : 1.5 0.8 0.5 —0.05

* A measurement, where different isotopes are chosen for the incoming particle, is discussed!
by Lixpuparp and Scusurr (1961).
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especially at the Jower energies. 'This result is oblained in spite of the facl
that at the three higher energics the absolute ranges of Brypx, Lassex and
PovrseN are as much as~40 percent bigher than theoretical ranges (Fig. 13).
In further measurements by the Copenhagen group (Stpunius, privale
communication), other examples of isotope cfiects were obtained for 50 keV
ions. Thus, for Na?*in hydrogen and deuterium (¢ = 2.4 and 4.65) one found
(R~ Ridewp = +0.157 mm, while (Ry—Ry),, = +0.104 mm, the ranges
themselves being of order of 0.9-1.0 mm, and ~50 percent larger than
theoretical ranges. For Au'®® jons in hydrogen and deuterium, ¢ is so small
(¢ = 0.024 and 0.047) that the effective power has shifted to s>2, and
(Rp=Bpepp = —0.061 mm, while (R}, —Rp), = —0.087mm; experimental
ranges are ~ 0.4 mm, i.e. about 30 percent larger than theorelical ranges.
Finally, for Ga% in helium isotope gases (e~0.4) one found Fret = Ry esy
=0.016 mm, to be compared with (R, — R @)m = — 0.008 mm; ex-
perimental ranges are ~0.4 mm, or 20 percent above theoretical ranges. All
ranges quoted here are in min at 300° K, 760 mm Hg. The agreement with
theoretical isotope shifls of ranges is thus fairly good, and it is inleresting
that mormally the change from larger to shorter range in the heavier isotope
occurs at e~1,
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